1
|
Borkowska P, Kowalczyk M, Zielińska A, Poskrobko K, Rother MB, Paul-Samojedny M, Kowalski J. NGF regulates survival and differentiation of umbilical mesenchymal stem/stromal cells into GABAergic, dopaminergic and cholinergic lineages. Eur J Pharm Sci 2025; 208:107053. [PMID: 40010415 DOI: 10.1016/j.ejps.2025.107053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
Mesenchymal stem cells advantageous properties have led scientists to conduct trials on a range of medical conditions, including incurable neurodegenerative diseases. Wharton-Jelly derived mesenchymal stem cells, given their ease of collection, are frequently selected for these studies. This research aimed to investigate the effects of nerve growth factor (NGF) gene overexpression on the neural differentiation, survivability, and gene and protein expression of these cells. The level of gene expression was tested using the ddPCR method. Six umbilical cords from donors were collected, and three randomly chosen primary cultures of Wharton-Jelly derived mesenchymal stem cells were used in experiment. Cells were transduced with lentiviral vectors and underwent a 12-day differentiation process. The results revealed neuron-like cells with significantly high expression of CHAT, GAD2 and TH genes. A corresponding increase in protein expression was also observed. Immunostaining demonstrated notable differences in neuron-like phenotypes, contingent on the environmental conditions of the research groups. Throughout the experiment, samples with transduced mesenchymal stem cells overexpressing the NGF gene showed the highest expression levels from almost all of studied genes and proteins, and were also the most phenotypically similar to neuron-like cells. The study concluded that sustained overexpression of NGF: guides mesenchymal stem cells towards the neural pathway, facilitates the differentiation of modified mesenchymal stem cells into GABAergic, dopaminergic, and cholinergic neuron-like cells, suggests that GABAergic neurons' marker predominantly co-expresses with other neurons' markers, such as cholinergic or dopaminergic ones, increases survivability of modified mesenchymal stem cells in toxic conditions; The limitations of the study is that we merely know that cells have begun to express neurogenic markers, but in the absence of standards for mature neuronal markers, we do not yet know how far they have progressed as differentiating cells.
Collapse
Affiliation(s)
- Paulina Borkowska
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Małgorzata Kowalczyk
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Aleksandra Zielińska
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Karol Poskrobko
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center (LUMC), 2300 RC, The Netherlands
| | | | - Jan Kowalski
- Department of Medical Genetics, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
2
|
Zhao G, Dai J, Hu Y. Development of regenerative therapies targeting fibrotic endometrium in intrauterine adhesion or thin endometrium to restore uterine function. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2842-6. [PMID: 40232669 DOI: 10.1007/s11427-024-2842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 04/16/2025]
Abstract
Intrauterine adhesions (IUA) and thin endometrium (TE) represent significant challenges in human reproduction. The condition arises frequently from damage to the endometrial basal layer, leading to fibrous tissue replacing the functional endometrium and impairing the uterus's ability to accept embryo implantation. Conventional treatments, mainly including hysteroscopic adhesiolysis and estrogen therapies, have shown limited success, particularly in severe cases. Regenerative medicine, with its focus on stem cell-based therapies and biomaterials, offers a promising avenue for restoring endometrial function and structure. This review synthesizes the current landscape of endometrial regeneration, focusing on the therapeutic potential of stem cells, the supportive role of biomaterials, and the importance of understanding molecular mechanisms to develop effective strategies for reconstruction of endometrial functional and fertility restoration.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Nanjing University Medical School, Nanjing University, Nanjing, 210009, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Nanjing University Medical School, Nanjing University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Solecki L, Fenelon M, Kerdjoudj H, Di Pietro R, Stati G, Gaudet C, Bertin E, Nallet J, Louvrier A, Gualdi T, Schiavi-Tritz J, Gindraux F. Perspectives on the use of decellularized/devitalized and lyophilized human perinatal tissues for bone repair: Advantages and remaining challenges. Mater Today Bio 2025; 30:101364. [PMID: 39811604 PMCID: PMC11732169 DOI: 10.1016/j.mtbio.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Human amniotic membrane (hAM) has been extensively used for several decades as a bioactive scaffold for regenerative medicine. In its cryopreserved form-one of the main storage formats-the presence of viable cells has often been questioned. Furthermore, there is little published evidence of the role of endogenous amniotic cells from cryopreserved hAM in tissue repair. Some technologies, often patented and combined, have facilitated the use of hAM. Decellularization and devitalization processes have been developed to ensure its safety and prevent immune rejection. Lyophilization and dehydration methods have had a significant impact on clinical practices by enabling storage at room temperature in the operating room and making handling and cutting easier. Consequently, the commercialization of hAM has expanded, initially in the USA, and now in Europe. In the last decade, there has been growing interest in new perinatal tissues in clinical medicine. Similar processes have been adapted for these tissues to prevent immune or inflammatory reactions, and to improve storage and make them easier to use. For example, in the USA, many products marketed for wound healing undergo lyophilization, sometimes in combination with decellularization. Given our expertise, we wanted to highlight the potential of decellularized/devitalized and lyophilized perinatal tissues in regenerative medicine, particularly for bone repair. In this opinion paper, we discuss why these tissues represent the future of regenerative medicine, their potential drawbacks and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Lauriana Solecki
- CHU Besançon, Service d'Ophtalmologie, F-25000 Besançon, France
- Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France
- Hôpitaux Universitaires de Strasbourg, Service d'Ophtalmologie, F-67091 Strasbourg, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, F-33076 Bordeaux, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, F-51100 Reims, France
- Université de Reims Champagne Ardenne, Faculté Dentaire, F-51100 Reims, France
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti- Pescara, Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti- Pescara, Chieti, Italy
| | - Camille Gaudet
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| | - Eugenie Bertin
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| | - Jeremie Nallet
- CHU Besançon, Service de chirurgie Pédiatrique, F-25000 Besançon, France
| | - Aurélien Louvrier
- Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| | - Thomas Gualdi
- CHU Besancon, Centre d’Investigation Clinique–Inserm CIC 1431, F 25000 Besançon, France
| | | | - Florelle Gindraux
- Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| |
Collapse
|
4
|
Arıkan ÇB, Yıldıran G, Çiçek G, Esin Çelik Z, Öz Bağcı F, Tosun Z. Geometric Reconstruction of Cartilage Tissue With Mesenchymal Stem Cell-Assisted Electromechanical Reshaping: An Experimental Study. Ann Plast Surg 2025; 94:114-120. [PMID: 39665455 DOI: 10.1097/sap.0000000000004162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
ABSTRACT Shaping the ear cartilage and preserving the shape are important and quite difficult. The aim of this study was to demonstrate the effectiveness of the Wharton's jelly-derived stem cell-assisted electromechanical reshaping method in a rabbit ear cartilage defect model and to compare it with surgical reshaping.For the purpose of 25 × 4-mm cartilage defect reconstruction, 48 rabbit ears were divided into 2 main groups according to the shaping method, and these main groups were divided into 3 subgroups according to stem cell injection: control, sham, and stem cell.A rabbit ear cartilage defect was created, and rib cartilage was collected for reconstruction. Although electromechanical reshaping was performed in accordance with the rabbit ear geometry angle, surgical scoring and suturing were performed in the classical method. Stem cells were applied in the first week, and the grafts were removed in the first month. Analyses included angular change, weight change, and histopathology.In this study, electromechanical reshaping was histopathologically similar to surgical reshaping and is more effective in preserving the shape. Cartilage thickness and weight were higher in stem cell groups.Electromechanical reshaping is emerging as an effective and standardized method to maintain cartilage stability and geometry and offers a viable alternative to classic surgical techniques. In addition, stem cell application gave physical strength to cartilage. It is a method that allows us to obtain more stable and more durable cartilages that maintain given shape with the combination of Wharton jelly-assisted electromechanical reshaping method.
Collapse
Affiliation(s)
- Çağrı Berk Arıkan
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Faculty of Medicine
| | - Gökçe Yıldıran
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Faculty of Medicine
| | - Gülsemin Çiçek
- Department of Histology and Embryology, Necmettin Erbakan University Faculty of Medicine
| | - Zeliha Esin Çelik
- Department of Pathology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Fatma Öz Bağcı
- Department of Histology and Embryology, Necmettin Erbakan University Faculty of Medicine
| | - Zekeriya Tosun
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, Selcuk University Faculty of Medicine
| |
Collapse
|
5
|
Krishnan I, Ling MTM, Ng MH, Law JX, Yusof MRM, Thangarajah T, Mahmood Z, Uda Zahli NI, Rajamanickam S, Subramani B, Lokanathan Y. Efficacy of Fetal Wharton's Jelly Mesenchymal Stem Cells-Derived Small Extracellular Vesicles in Metabolic Syndrome. Biomolecules 2025; 15:44. [PMID: 39858439 PMCID: PMC11763124 DOI: 10.3390/biom15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVE Metabolic syndrome (MetS) is characterized by abdominal obesity, increased blood pressure (BP), fasting blood glucose (FBG) and triglyceride levels, and reduced high-density lipoprotein (HDL) levels. This study aims to investigate the efficacy of the Wharton's jelly mesenchymal stem cells (WJMSCs)-derived small extracellular vesicles' (sEVs) preparations in managing MetS. METHOD Twenty-four rats were fed with a high-fat and high-fructose diet to induce MetS for 16 weeks and randomized into three groups (n = 8/group): a MetS Control group treated with normal saline, MetS Low Dose (LD) group treated with a LD of sEVs preparations (3 × 109 particle/rat), and MetS High Dose (HD) group treated with a HD of sEVs preparations (9 × 109 particles/rat). The Control Non-Disease (ND) group was given a standard rat diet and autoclaved tap water with normal saline as treatment. Treatments were given via intravenous injection every three weeks for twelve weeks. Rats were assessed every six weeks for physical measurements, FBG, lipid profiles, CRP, leptin, adiponectin, and BP. Necropsy evaluation was performed on the lungs, liver, spleen, and kidney. RESULTS Significant reductions in FBG, triglycerides, BP, and increased HDL levels were observed in the treated groups compared to the control group. However, significant abdominal circumference (AC) improvement was not observed in the treated groups. Non-significant associations were found between fasting CRP, leptin, and adiponectin levels with MetS rats after treatment. In addition, sEVs preparations improved inflammation and hemorrhage in the lung and mineralisation in the renal of the treated group. CONCLUSIONS Human fetal WJMSCs-derived sEVs preparations improve all the clusters of MetS in rats except AC and could be further explored as a treatment for MetS.
Collapse
Affiliation(s)
- Illayaraja Krishnan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
| | - Magdalene Tan Mei Ling
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
| | - Mohd Rafizul Mohd Yusof
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia;
| | - Thavachelvi Thangarajah
- Department of Obstetrics and Gynaecology, Hospital Angkatan Tentera (HAT) Tuanku Mizan, Wangsa Maju, Kuala Lumpur 53300, Malaysia;
| | - Zalina Mahmood
- Production and Blood Supply Management Division, National Blood Centre, Jalan Tun Razak, Kuala Lumpur 50400, Malaysia;
| | - Nurul Izzati Uda Zahli
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia;
| | - Shathiya Rajamanickam
- Medixcell Sdn. Bhd., Level 5, Equatorial Plaza, Lot 5-5 & 5-6, Jalan Sultan Ismail, Kuala Lumpur 50250, Malaysia; (S.R.); (B.S.)
| | - Baskar Subramani
- Medixcell Sdn. Bhd., Level 5, Equatorial Plaza, Lot 5-5 & 5-6, Jalan Sultan Ismail, Kuala Lumpur 50250, Malaysia; (S.R.); (B.S.)
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia; (I.K.); (M.T.M.L.); (M.H.N.); (J.X.L.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
6
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
7
|
Tilotta V, Vadalà G, Ambrosio L, Di Giacomo G, Cicione C, Russo F, Darinskas A, Papalia R, Denaro V. Wharton's Jelly mesenchymal stromal cell-derived extracellular vesicles promote nucleus pulposus cell anabolism in an in vitro 3D alginate-bead culture model. JOR Spine 2024; 7:e1274. [PMID: 38222813 PMCID: PMC10782051 DOI: 10.1002/jsp2.1274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intradiscal transplantation of mesenchymal stromal cells (MSCs) has emerged as a promising therapy for intervertebral disc degeneration (IDD). However, the hostile microenvironment of the intervertebral disc (IVD) may compromise the survival of implanted cells. Interestingly, studies reported that paracrine factors, such as extracellular vesicles (EVs) released by MSCs, may regenerate the IVD. The aim of this study was to investigate the therapeutic effects of Wharton's Jelly MSC (WJ-MSC)-derived EVs on human nucleus pulposus cells (hNPCs) using an in vitro 3D alginate-bead culture model. Methods After EV isolation and characterization, hNPCs isolated from surgical specimens were encapsulated in alginate beads and treated with 10, 50, and 100 μg/mL WJ-MSC-EVs. Cell proliferation and viability were assessed by flow cytometry and live/dead staining. Nitrite and glycosaminoglycan (GAG) content was evaluated through Griess and 1,9-dimethylmethylene blue assays. hNPCs in alginate beads were paraffin-embedded and stained for histological analysis (hematoxylin-eosin and Alcian blue) to assess extracellular matrix (ECM) composition. Gene expression levels of catabolic (MMP1, MMP13, ADAMTS5, IL6, NOS2), anabolic (ACAN), and hNPC marker (SOX9, KRT19) genes were analyzed through qPCR. Collagen type I and type II content was assessed with Western blot analysis. Results Treatment with WJ-MSC-EVs resulted in an increase in cell content and a decrease in cell death in degenerated hNPCs. Nitrite production was drastically reduced by EV treatment compared to the control. Furthermore, proteoglycan content was enhanced and confirmed by Alcian blue histological staining. EV stimulation attenuated ECM degradation and inflammation by suppressing catabolic and inflammatory gene expression levels. Additionally, NPC phenotypic marker genes were also maintained by the EV treatment. Conclusions WJ-MSC-derived EVs ameliorated hNPC growth and viability, and attenuated ECM degradation and oxidative stress, offering new opportunities for IVD regeneration as an attractive alternative strategy to cell therapy, which may be jeopardized by the harsh microenvironment of the IVD.
Collapse
Affiliation(s)
- Veronica Tilotta
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Gianluca Vadalà
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Luca Ambrosio
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Giuseppina Di Giacomo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Claudia Cicione
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
| | - Fabrizio Russo
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Adas Darinskas
- Laboratory of Immunology, National Cancer InstituteVilniusLithuania
- JSC Innovita Research, Tissue BankVilniusLithuania
| | - Rocco Papalia
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and SurgeryUniversità Campus Bio‐Medico di RomaRomeItaly
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma SurgeryFondazione Policlinico Universitario Campus Bio‐MedicoRomeItaly
| |
Collapse
|
8
|
Zhang Z, Wu Y, Xuan Z, Xu H, Yin S, Meng Z. Self-assembly of three-dimensional liver organoids: virtual reconstruction via endocytosed polymer dots for refactoring the fine structure. Biomater Sci 2023; 11:7867-7883. [PMID: 37902572 DOI: 10.1039/d3bm01174g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In vitro culture of organoids holds considerable promise for the treatment of diseases or the provision of artificial organs. Traditional 2D differentiation from mesenchymal stem cells (MSCs) faces challenges in replicating the development of embryonic organs at the cellular level; conversely, the cultivation of 3D organoids exhibits potential for application. It is crucial for clinicians and technology researchers to acquire insights into organoid tissue differentiation, autonomous morphogenesis, as well as 3D assembly processes in vitro. In this investigation, novel 3D organoids capable of engendering complex liver-like tissues in vitro were cultured, and a class of high-luminance semiconductor polymer dots (Pdots) was employed to monitor the self-assembly process of 3D liver organoid tissues and cellular interaction and migration dynamics. Three-dimensional liver-bud (3D-LB) organoid tissues were derived through the interplay of induced MSCs, Wharton's Jelly, and human umbilical vein endothelial cells (HUVECs), and their structural characteristics were determined during the liver-bud organoid development; ultimately, the co-cultured organoid spatial cellular clusters resembling a truffle were successfully replicated. Utilizing R8-Pdots with remarkable resolution and biocompatibility, the structural elements of functional and vascularized organs derived from liver organoid tissues were adeptly reconstituted, and this investigation shall contribute to a further understanding of human hepato-developmental physiology and liver-disease modeling.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Jilin University, No. 126 Xiantai Street, Changchun, Jilin 130000, P. R. China.
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China.
| | - Zhilu Xuan
- Department of Obstetrics & Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130012, P. R. China
| | - Haotian Xu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Jilin University, No. 126 Xiantai Street, Changchun, Jilin 130000, P. R. China.
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China.
| | - Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Jilin University, No. 126 Xiantai Street, Changchun, Jilin 130000, P. R. China.
| |
Collapse
|
9
|
Mazloomnejad R, Babajani A, Kasravi M, Ahmadi A, Shariatzadeh S, Bahrami S, Niknejad H. Angiogenesis and Re-endothelialization in decellularized scaffolds: Recent advances and current challenges in tissue engineering. Front Bioeng Biotechnol 2023; 11:1103727. [PMID: 36873356 PMCID: PMC9978201 DOI: 10.3389/fbioe.2023.1103727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Decellularization of tissues and organs has recently become a promising approach in tissue engineering and regenerative medicine to circumvent the challenges of organ donation and complications of transplantations. However, one main obstacle to reaching this goal is acellular vasculature angiogenesis and endothelialization. Achieving an intact and functional vascular structure as a vital pathway for supplying oxygen and nutrients remains the decisive challenge in the decellularization/re-endothelialization procedure. In order to better understand and overcome this issue, complete and appropriate knowledge of endothelialization and its determining variables is required. Decellularization methods and their effectiveness, biological and mechanical characteristics of acellular scaffolds, artificial and biological bioreactors, and their possible applications, extracellular matrix surface modification, and different types of utilized cells are factors affecting endothelialization consequences. This review focuses on the characteristics of endothelialization and how to optimize them, as well as discussing recent developments in the process of re-endothelialization.
Collapse
Affiliation(s)
- Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siavash Shariatzadeh
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Pampanella L, Abruzzo PM, Tassinari R, Alessandrini A, Petrocelli G, Ragazzini G, Cavallini C, Pizzuti V, Collura N, Canaider S, Facchin F, Ventura C. Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells. Pharmaceuticals (Basel) 2023; 16:289. [PMID: 37259432 PMCID: PMC9966134 DOI: 10.3390/ph16020289] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 09/01/2023] Open
Abstract
Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | - Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy
| | | | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Nicoletta Collura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB) c/o Eldor Lab, Via Corticella 183, 40129 Bologna, Italy
| |
Collapse
|
11
|
Panero AJ, Everts PA, Nakagawa H, Sussman W, Qin X. Basic Science of Allograft Orthobiologics. Phys Med Rehabil Clin N Am 2023; 34:49-61. [DOI: 10.1016/j.pmr.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Medvediev VV, Oleksenko NP, Pichkur LD, Verbovska SA, Savosko SI, Draguntsova NG, Lontkovskyi YA, Vaslovych VV, Tsymbalyuk VI. Implantation Effect of a Fibrin Matrix Associated with Mesenchymal Wharton’s Jelly Stromal Cells on the Course of an Experimental Spinal Cord Injury. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
13
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
14
|
Gupta A. Platelet-Rich Plasma One Week Prior to Hyaluronic Acid vs. Platelet-Rich Plasma Alone for the Treatment of Knee Osteoarthritis. Biomedicines 2022; 10:2805. [PMID: 36359325 PMCID: PMC9687872 DOI: 10.3390/biomedicines10112805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Knee osteoarthritis (OA) is the most recognized form of OA, responsible for approximately 4/5th of the global burden of the OA [...].
Collapse
Affiliation(s)
- Ashim Gupta
- Regenerative Orthopaedics, Noida 201301, UP, India;
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, UP, India
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| |
Collapse
|
15
|
de Souza Dobuchak D, Stricker PEF, de Oliveira NB, Mogharbel BF, da Rosa NN, Dziedzic DSM, Irioda AC, Athayde Teixeira de Carvalho K. The Neural Multilineage Differentiation Capacity of Human Neural Precursors from the Umbilical Cord-Ready to Bench for Clinical Trials. MEMBRANES 2022; 12:873. [PMID: 36135892 PMCID: PMC9500740 DOI: 10.3390/membranes12090873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mesenchymal stem cells (MSC) are promising for regenerative medicine as they have a vast differentiation capacity, immunomodulatory properties and can be isolated from different tissues. Among them, the umbilical cord is considered a good source of MSC, as its collection poses no risk to donors and is unrelated to ethical issues. Furthermore, umbilical cord mesenchymal stem cells (UC-MSC) can differentiate into several cell lines, including neural lineages that, in the future, may become an alternative in the treatment of neurodegenerative diseases. This study used a natural functional biopolymer matrix (NFBX) as a membrane to differentiate UC-MSC into neurospheres and their Neural precursors without using neurogenic growth factors or gene transfection. Through the characterization of Neural precursors and differentiated cells, it was possible to demonstrate the broad potential for the differentiation of cells obtained through cultivation on this membrane. To demonstrate these Neural precursors' potential for future studies in neurodegenerative diseases, the Neural precursors from Wharton's jelly were differentiated into Schwann cells, oligodendrocytes, cholinergic-, dopaminergic- and GABAergic-like neurons.
Collapse
|
16
|
Gupta A, Maffulli N. Allogenic Umbilical Cord Tissue for Treatment of Knee Osteoarthritis. Sports Med Arthrosc Rev 2022; 30:162-165. [PMID: 35921598 DOI: 10.1097/jsa.0000000000000350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Interest in use of perinatal allogenic tissues including clinical-grade minimally manipulated umbilical cord tissue-derived allograft formulations to treat knee osteoarthritis (OA) patients is increasing. Limited studies have characterized these formulations and evaluated their safety and efficacy in knee OA patients. We developed such formulation and reported the presence of growth factors, cytokines, hyaluronic acid, and exosomes. We reported that its administration is safe, and resulted in 50% pain reduction and improvement in knee injury and osteoarthritis outcome score (over 10%) and 36-item short form survey (25%). Another study reported no adverse events post injection of similar formulation and statistically significant ( P <0.001) improvement in visual analog scale and Western Ontario and McMaster Universities Osteoarthritis Index scores and reduction in medication usage in patients (77.8%). We also summarized the clinical trials registered on ClinicalTrials.gov utilizing umbilical cord tissue for knee OA treatment. In conclusion, available studies are preliminary but pave the way to higher level appropriately powered investigations, and these formulations should be considered as nonoperative alternative to manage knee OA.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics
- BioIntegrate, Lawrenceville, GA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX
- Veterans in Pain (V.I.P), Valencia, CA
- General Therapeutics, Cleveland Heights, OH
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Fisciano
- San Giovanni di Dio e Ruggi D'Aragona Hospital, "Clinica Orthopedica" Department, Hospital of Salerno, Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, Staffordshire, UK
| |
Collapse
|
17
|
Gupta A, Jeyaraman M, Maffulli N. Common Medications Which Should Be Stopped Prior to Platelet-Rich Plasma Injection. Biomedicines 2022; 10:2134. [PMID: 36140235 PMCID: PMC9495905 DOI: 10.3390/biomedicines10092134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is an extremely prevalent joint condition in the United States, affecting over 30 million people [...].
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute, STORI Inc., Laredo, TX 78045, USA
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, India
| | - Madhan Jeyaraman
- South Texas Orthopaedic Research Institute, STORI Inc., Laredo, TX 78045, USA
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, India
- Department of Orthopaedics, Faculty of Medicine, Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute University, Chennai 600095, India
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Ortopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
| |
Collapse
|
18
|
Foltz KM, Neto AE, Francisco JC, Simeoni RB, Miggiolaro AFRDS, do Nascimento TG, Mogharbel BF, de Carvalho KAT, Faria-Neto JR, de Noronha L, Guarita-Souza LC. Decellularized Wharton Jelly Implants Do Not Trigger Collagen and Cartilaginous Tissue Production in Tracheal Injury in Rabbits. Life (Basel) 2022; 12:942. [PMID: 35888031 PMCID: PMC9316797 DOI: 10.3390/life12070942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Tracheal lesions are pathologies derived from the most diverse insults that can result in a fatal outcome. Despite the number of techniques designed for the treatment, a limiting factor is the extent of the extraction. Therefore, strategies with biomaterials can restructure tissues and maintain the organ's functionality, like decellularized Wharton's jelly (WJ) as a scaffold. The aim is to analyze the capacity of tracheal tissue regeneration after the implantation of decellularized WJ in rabbits submitted to a tracheal defect. METHODS An in vivo experimental study was undertaken using twenty rabbits separated into two groups (n = 10). Group 1 submitted to a tracheal defect, group 2 tracheal defect, and implantation of decellularized WJ. The analyses were performed 30 days after surgery through immunohistochemistry. RESULTS Inner tracheal area diameter (p = 0.643) didn't show significance. Collagen type I, III, and Aggrecan highlighted no significant difference between the groups (both collagens with p = 0.445 and the Aggrecan p = 0.4). CONCLUSION The scaffold appears to fit as a heterologous implant and did not trigger reactions such as rejection or extrusion of the material into the recipient. However, these results suggested that although the WJ matrix presents several characteristics as a biomaterial for tissue regeneration, it did not display histopathological benefits in trachea tissue regeneration.
Collapse
Affiliation(s)
- Katia Martins Foltz
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (A.E.N.); (T.G.d.N.); (J.R.F.-N.); (L.d.N.); (L.C.G.-S.)
| | - Aloysio Enck Neto
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (A.E.N.); (T.G.d.N.); (J.R.F.-N.); (L.d.N.); (L.C.G.-S.)
| | - Júlio César Francisco
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (J.C.F.); (R.B.S.); (A.F.R.d.S.M.)
| | - Rossana Baggio Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (J.C.F.); (R.B.S.); (A.F.R.d.S.M.)
| | - Anna Flávia Ribeiro dos Santos Miggiolaro
- Experimental Laboratory of Institute of Biological and Health Sciences, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (J.C.F.); (R.B.S.); (A.F.R.d.S.M.)
| | - Thatyanne Gradowski do Nascimento
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (A.E.N.); (T.G.d.N.); (J.R.F.-N.); (L.d.N.); (L.C.G.-S.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties (FPP), Curitiba 80250-060, Paraná, Brazil; (B.F.M.); (K.A.T.d.C.)
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties (FPP), Curitiba 80250-060, Paraná, Brazil; (B.F.M.); (K.A.T.d.C.)
| | - José Rocha Faria-Neto
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (A.E.N.); (T.G.d.N.); (J.R.F.-N.); (L.d.N.); (L.C.G.-S.)
| | - Lúcia de Noronha
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (A.E.N.); (T.G.d.N.); (J.R.F.-N.); (L.d.N.); (L.C.G.-S.)
- Laboratory of Experimental Pathology, Graduate Program of Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil
| | - Luiz César Guarita-Souza
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil; (A.E.N.); (T.G.d.N.); (J.R.F.-N.); (L.d.N.); (L.C.G.-S.)
| |
Collapse
|
19
|
Aratikatla A, Maffulli N, Rodriguez HC, Gupta M, Potty AG, El-Amin SF, Gupta A. Allogenic perinatal tissue for musculoskeletal regenerative medicine applications: a systematic review protocol. J Orthop Surg Res 2022; 17:307. [PMID: 35690774 PMCID: PMC9188718 DOI: 10.1186/s13018-022-03197-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Musculoskeletal ailments impact the lives of millions of people, and at times necessitate surgery followed by physiotherapy, drug treatments, or immobilization. Regenerative musculoskeletal medicine has undergone enormous progress over the last few decades. Sources of tissues used for regenerative medicine purposes can be grouped into autologous or allogenic. Although autologous sources are promising, there is a wide range of limitations with the treatment, including the lack of randomized controlled studies for orthopaedic conditions, donor site morbidity, and highly variable outcomes for patients. Allogenic sources bypass some of these shortcomings and are a promising source for orthopaedic regenerative medicine applications. METHODS A systematic search will be performed using PubMed, Elsevier, ScienceDirect, and Google Scholar databases for articles published in English before May 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and guidelines will be used. Studies will be eligible if they apply to acute and chronic orthopaedic musculoskeletal complications or animal or human disease models. Publications must include the use of MSCs and/or tissue obtained from amniotic/chorionic membrane, amniotic fluid, umbilical cord, and/or umbilical cord-derived Wharton's jelly as an intervention. Placebos, noninjury models, acute injury models, non-injury models, and gold standard treatments will be compared. The study selection will be performed by two independent reviewers using a dedicated reference management software. Data synthesis and meta-analysis will be performed separately for preclinical and clinical studies. DISCUSSION The results will be published in relevant peer-reviewed scientific journals. Investigators will present results at national or international conferences. TRIAL REGISTRATION The Protocol will be registered on PROSPERO international prospective register of systematic reviews prior to commencement.
Collapse
Affiliation(s)
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Orthopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 4DG UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, ST5 5BG UK
| | - Hugo C. Rodriguez
- Holy Cross Hospital, Orthopaedic Research Institute, Fort Lauderdale, FL 33334 USA
- Department of Orthopaedic Surgery, Larkin Community Hospital, South Miami, FL USA
| | - Manu Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- Polar Aesthetics Dental & Cosmetic Centre, Noida, Uttar Pradesh 201301 India
| | - Anish G. Potty
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- Laredo Sports Medicine Clinic, Laredo, TX 78041 USA
| | - Saadiq F. El-Amin
- El-Amin Orthopaedic & Sports Medicine Institute, Lawrenceville, GA 30043 USA
- Regenerative Sports Medicine, Lawrenceville, GA 30043 USA
- BioIntegrate Inc., 2505 Newpoint Pkwy, Suite – 100, Lawrenceville, GA 30043 USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043 USA
- Polar Aesthetics Dental & Cosmetic Centre, Noida, Uttar Pradesh 201301 India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA
- BioIntegrate Inc., 2505 Newpoint Pkwy, Suite – 100, Lawrenceville, GA 30043 USA
- Veterans in Pain (V.I.P.), Valencia, CA 91354 USA
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh 110048 India
| |
Collapse
|
20
|
Penolazzi L, Lambertini E, D'Agostino S, Pozzobon M, Notarangelo MP, Greco P, De Bonis P, Nastruzzi C, Piva R. Decellularized extracellular matrix-based scaffold and hypoxic priming: A promising combination to improve the phenotype of degenerate intervertebral disc cells. Life Sci 2022; 301:120623. [DOI: 10.1016/j.lfs.2022.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
21
|
Gupta A. Allogenic Amniotic Tissue for Treatment of Knee and Hip Osteoarthritis. Pharmaceuticals (Basel) 2022; 15:404. [PMID: 35455401 PMCID: PMC9031613 DOI: 10.3390/ph15040404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) impacts millions of people and places a high burden on healthcare systems in the United States. Current treatment modalities have limitations and do not address underlying pathology. Lately, there has been an immense growth in the use of biologics, including perinatal allogenic tissues for orthopedic regenerative medicine applications. Amniotic tissue is an exciting new alternative for such applications. Despite several published studies that reported its use for treatment of ophthalmic conditions and complex wounds, there are limited clinical studies evaluating its safety and efficacy in treating patients suffering with knee or hip OA. In this manuscript, I focused on three prospective clinical studies which evaluated the safety and efficacy of amniotic tissue in patients suffering with moderate knee or hip OA. The results from these studies presented the scientific community with much needed, well-executed, and prospective clinical trials. Though these trials demonstrated that administration of amniotic tissue in knee or hip joint is safe and potentially effective, more multi-center, prospective, double-blinded, randomized controlled trials are warranted to further establish the efficacy of amniotic tissue to mitigate symptoms of knee and hip OA to ultimately justify its clinical use.
Collapse
Affiliation(s)
- Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
- BioIntegrate, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Veterans in Pain (V.I.P.), Valencia, CA 91354, USA
- General Therapeutics, Cleveland Heights, OH 44118, USA
| |
Collapse
|