1
|
Wan X, Wu J, Wang X, Cui L, Xiao Q. Accumulation patterns of flavonoids and phenolic acids in different colored sweet potato flesh revealed based on untargeted metabolomics. Food Chem X 2024; 23:101551. [PMID: 38974199 PMCID: PMC11225656 DOI: 10.1016/j.fochx.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Sweet potatoes are rich in flavonoids and phenolic acids, showing incomparable nutritional and health value. In this investigation, we comprehensively analyzed the secondary metabolite profiles in the flesh of different-colored sweet potato flesh. We determined the metabolomic profiles of white sweet potato flesh (BS), orange sweet potato flesh (CS), and purple sweet potato flesh (ZS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CS vs. BS, ZS vs. BS, and ZS vs. CS comparisons identified a total of 4447 secondary metabolites, including 1540, 1949, and 1931 differentially accumulated metabolites. Among them, there were significant differences in flavonoids and phenolic acids. There were 20 flavonoids and 13 phenolic acids that were common differential metabolites among the three comparison groups. The accumulation of paeoniflorin-like and delphinidin-like compounds may be responsible for the purple coloration of sweet potato flesh. These findings provide new rationale and insights for the development of functional foods for sweet potatoes. List of compounds Kaempferol (PubChem CID: 5280863); Peonidin 3-(6"-p-coumarylglucoside) (PubChem CID: 44256849); Swerchirin (PubChem CID: 5281660); Trilobatin (PubChem CID: 6451798); 3-Geranyl-4-hydroxybenzoate (PubChem CID: 54730540); Eupatorin (PubChem CID: 97214); Icaritin (PubChem CID: 5318980); Isorhamnetin (PubChem CID: 5281654); Glucoliquiritin apioside (PubChem CID: 74819335); Brazilin (PubChem CID: 73384).
Collapse
Affiliation(s)
- Xiaolin Wan
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, 44500, China
| | - Jiaqi Wu
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, 44500, China
| | - Xiuzhi Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, 44500, China
| | - Lingjun Cui
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, 44500, China
| | - Qiang Xiao
- Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi, 44500, China
| |
Collapse
|
2
|
Tilkat E, Jahan I, Hoşer A, Kaplan A, Özdemir O, Onay A. Anatolian medicinal plants as potential antiviral agents: bridging traditional knowledge and modern science in the fight against COVID-19 and related viral infections. Turk J Biol 2024; 48:218-241. [PMID: 39296335 PMCID: PMC11407354 DOI: 10.55730/1300-0152.2699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/23/2024] [Accepted: 06/26/2024] [Indexed: 09/21/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the cause of the coronavirus 2019 (COVID-19), commonly known as the coronavirus pandemic. Since December 2020, COVID-19 vaccines have been extensively administered in numerous countries. In addition to new antiviral medications, the treatment regimen encompasses symptom management. Despite sustained research efforts, the outbreak remains uncontrolled, with affected patients still lacking proper treatment. This review is a valuable asset for researchers and practitioners aiming to delve into the yet unexplored potential of Anatolian flora in the fight against COVID-19 and other viral infections. Numerous medicinal plants in Anatolia, such as thyme, sage, cannabis, oregano, licorice root, and Origanum sp., contain bioactive compounds with proven antiviral properties that have been used in the region for centuries. The rich legacy of traditional Anatolian medicine (TAM), has significantly influenced modern medicine; thus, the profusion of medicinal plants native to Anatolia holds promise for antiviral drug development, making this review essential for researchers and practitioners.
Collapse
Affiliation(s)
- Engin Tilkat
- Department of Biology, Faculty of Science and Literature, Batman University, Batman, Turkiye
| | - Israt Jahan
- Department of Health Care Services, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkiye
| | - Ayşe Hoşer
- Department of Biology, Faculty of Science and Literature, Batman University, Batman, Turkiye
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman, Turkiye
| | - Oğuzhan Özdemir
- Department of Veterinary Science, Technical Sciences Vocational School, Batman University, Batman, Turkiye
| | - Ahmet Onay
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkiye
| |
Collapse
|
3
|
Ameri A, Farashahinejad M, Davoodian P, Safa O, Kusha A, Dadvand H, Hassanipour S, Fathalipour M. Efficacy and safety of licorice (Glycyrrhiza glabra) in moderately ill patients with COVID-19: a randomized controlled trial. Inflammopharmacology 2023; 31:3037-3045. [PMID: 37847472 DOI: 10.1007/s10787-023-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023]
Abstract
Licorice extract (glycyrrhizin), a potent antiviral, anti-inflammatory, and antioxidant remedy, is a potential therapeutic option for COVID-19. We evaluated the efficacy and safety of licorice in patients with moderate COVID-19. In this study, 60 patients with confirmed COVID-19 were randomly assigned in a 1:1 ratio to receive licorice (at a dose of 760 mg three times a day for seven days) or control groups. The primary outcomes were SPO2, body temperature, and respiratory rate (RR) after the end of the intervention. The findings indicated that SPO2, body temperature, and RR had no significant difference between the groups at the end of the intervention. However, CRP and ALT improved in the licorice group toward the baseline. The number of patients with worse prognoses, LOS, mortality, and the incidence of adverse events were not different between the groups at the end of the study. Licorice had no beneficial effect on the clinical symptoms of COVID-19. Moreover, this intervention demonstrated a safe profile of adverse events. The confirmation of the results of this preparatory trial requires more detailed multiple-center trials with a larger sample size.
Collapse
Affiliation(s)
- Ali Ameri
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Farashahinejad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parivash Davoodian
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Kusha
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Habib Dadvand
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Fathalipour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
4
|
Alikiaie B, Shalamzari SMH, Soltani R, Yegdaneh A, Mousavi S. Efficacy of Licorice as Adjunctive Therapy in Critically Ill Patients with COVID-19: A Randomized, Placebo-Controlled, Double-Blind Clinical Trial. J Res Pharm Pract 2023; 12:141-147. [PMID: 39262414 PMCID: PMC11386065 DOI: 10.4103/jrpp.jrpp_22_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 09/13/2024] Open
Abstract
Objective There is no definitive pharmacological strategy for COVID-19; thus, medicinal herbs can be an appropriate option for COVID-19 management. We investigated the efficacy of a D-reglis® tablet (root extract of licorice) as adjuvant therapy in critically ill patients with COVID-19 at intensive care units (ICUs) of Alzahra Teaching Hospital affiliated with Isfahan University of Medical Sciences, Isfahan, Iran. Methods In the present double-blind, randomized, placebo-controlled clinical trial, critically ill cases with COVID-19 (n = 52) received a D-reglis® tablet (760 mg) or a placebo tablet for 5 days. The ICU stay length was the primary outcome. The secondary outcome included the changes in oxygen saturation, duration of mechanical ventilation, mortality rate, and Sequential Organ Failure Assessment (SOFA) Score during the study period. Findings The ICU stay was significantly lower in the licorice group than in the placebo group (P = 0.015). No significant difference was detected between the groups regarding oxygen saturation, SOFA score, duration of mechanical ventilation, and mortality rate. Conclusion The licorice tablet (D-reglis®) as an adjuvant treatment showed promising results regarding the ICU stay length in critically ill COVID-19 patients. However, further clinical trials with larger sample sizes, further duration of intervention, measurement of inflammatory markers, and further study about the molecular mechanism of the effect of licorice on COVID-19 should be done to obtain more conclusive findings.
Collapse
Affiliation(s)
- Babak Alikiaie
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rasool Soltani
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Zhu W, Wang M, Jin L, Yang B, Bai B, Mutsinze RN, Zuo W, Chattipakorn N, Huh JY, Liang G, Wang Y. Licochalcone A protects against LPS-induced inflammation and acute lung injury by directly binding with myeloid differentiation factor 2 (MD2). Br J Pharmacol 2023; 180:1114-1131. [PMID: 36480410 DOI: 10.1111/bph.15999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a challenging clinical syndrome that leads to various respiratory sequelae and even high mortality in patients with severe disease. The novel pharmacological strategies and therapeutic drugs are urgently needed. Natural products have played a fundamental role and provided an abundant pool in drug discovery. EXPERIMENTAL APPROACH A compound library containing 160 natural products was used to screen potential anti-inflammatory compounds. Mice with LPS-induced ALI was then used to verify the preventive and therapeutic effects of the selected compounds. KEY RESULTS Licochalcone A was discovered from the anti-inflammatory screening of natural products in macrophages. A qPCR array validated the inflammation-regulatory effects of licochalcone A and indicated that the potential targets of licochalcone A may be the upstream proteins in LPS pro-inflammatory signalling. Further studies showed that licochalcone A directly binds to myeloid differentiation factor 2 (MD2), an assistant protein of toll-like receptor 4 (TLR4), to block both LPS-induced TRIF- and MYD88-dependent pathways. LEU61 and PHE151 in MD2 protein are the two key residues that contribute to the binding of MD2 to licochalcone A. In vivo, licochalcone A treatment alleviated ALI in LPS-challenged mice through significantly reducing immunocyte infiltration, suppressing activation of TLR4 pathway and inflammatory cytokine induction. CONCLUSION AND IMPLICATIONS In summary, our study identified MD2 as a direct target of licochalcone A for its anti-inflammatory activity and suggested that licochalcone A might serve as a novel MD2 inhibitor and a potential drug for developing ALI/ARDS therapy.
Collapse
Affiliation(s)
- Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rumbidzai Natasha Mutsinze
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zuo
- Affiliated Xiangshan Hospital of Wenzhou Medical University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,College of Pharmacy, Chonnam National University, Gwangju, Korea.,Affiliated Xiangshan Hospital of Wenzhou Medical University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, China
| |
Collapse
|
6
|
Kazachinskaia EI, Zibareva LN, Filonenko ES, Ivanova AV, Gadzhieva MM, Bekshokov KK, Kononova YV, Chepurnov AA, Shestopalov AМ. Investigation of the inhibitory activity of extracts, fractions and secondary metabolites of <i>Silene</i> spp. (<i>Caryophyllaceae</i>) and <i>Serratula cupuliformis</i> (<i>Asteraceae</i>) on the replication of SARS-CoV-2 coronavirus. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2023. [DOI: 10.18470/1992-1098-2023-1-62-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aim. In vitro analysis of the inhibitory activity of extracts, fractions and secondary metabolites of plants of the genus Silene [Caryophylaceae] and Serratula cupuliformis [Asteraceae) on the replication of SARS-CoV-2.Material and Methods. Silene spp. and Serratula cupuliformis of the Siberian Botanical Garden of National Research Tomsk State University were used. Ethanol extracts and butanol fractions of Silene spp. were prepared. The flavonoid shaftoside and the ecdysteroid 20-hydroxyecdysone from Lychnis chalcedonica were isolated. Analysis of BAS was carried out by the HPLC method. In vitro analysis of the inhibitory activity of extracts on SARS-CoV-2 replication was performed in Vero cell culture by direct inactivation [neutralization) of virions. Comparison samples were dry ethanol extracts of chaga [Inonotus obliquus, Basidiomycota), spices of cloves [Syzygium aromaticum, Myrtaceae) and root of licorice [Glycyrrhiza glabra L., Fabaceae).Results. The inhibitory activity of ethanol extracts and butanol fractions of Silene spp., as well as individual compounds [shaftozide and 20-E) was revealed in the range of 50% effective concentrations [EC50) when dissolved in water from 339.85±83.92 pg/ml to 1.59±0.39 pg/ml and when dissolved in DMSO from 119.34±26.34 pg/ml to 2.22±0.57 pg/ml, respectively. The butanol fraction of Serratula cupuliformis was active with EC50=21.74±4.80 and 27.42±6.05 pg/mL. These results for some samples of Silene spp. and Serratula cupuliformis are comparable to the EC50 values of the comparators.Conclusion. The results obtained suggest the presence of biologically active substances in the herbal preparations studied that act destructively on virions of SARS-CoV-2 and affect one of the main stages of its "life" cycle - on the attachment to receptors of sensitive cells.
Collapse
Affiliation(s)
- E. I. Kazachinskaia
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Vector State Research Centre of Virology and Biotechnology
| | | | | | - A. V. Ivanova
- Vector State Research Centre of Virology and Biotechnology
| | | | - K. K. Bekshokov
- I.M. Sechenov First Moscow State Medical University, Russian Ministry of Health
| | - Yu. V. Kononova
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. A. Chepurnov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
| | - A. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
| |
Collapse
|
7
|
Zhang K, Wang L, Peng J, Sangji K, Luo Y, Zeng Y, Zeweng Y, Fan G. Traditional Tibetan medicine to fight against COVID-19: Basic theory and therapeutic drugs. Front Pharmacol 2023; 14:1098253. [PMID: 36874035 PMCID: PMC9978713 DOI: 10.3389/fphar.2023.1098253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
The Coronavirus Diseases 2019 (COVID-19) has been rapidly spreading globally and has caused severe harm to the health of people and a substantial social burden. In response to this situation, experts around the world have considered various treatments, including the use of traditional medicine. Traditional Tibetan medicine (TTM), one of the traditional medicines in China, has played an important role in the treatment of infectious diseases in history. It has formed a solid theoretical foundation and accumulated rich experience in the treatment of infectious diseases. In this review, we provide a comprehensive introduction to the basic theory, treatment strategies, and commonly used drugs of TTM for the treatment of COVID-19. In addition, the efficacies and potential mechanisms of these TTM drugs against COVID-19 are discussed based on available experimental data. This review may provide important information for the basic research, clinical application and drug development of traditional medicines for the treatment of COVID-19 or other infectious diseases. More pharmacological studies are needed to reveal the therapeutic mechanisms and active ingredients of TTM drugs in the treatment of COVID-19.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayan Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kangzhuo Sangji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongzhong Zeweng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Каzachinskaia ЕI, Romanova VD, Ivanоva AV, Chepurnov АА, Murtazalieva ZA, Коnonova YV, Shaulo DN, Romanyuk VV, Shestopalov АМ. Inhibitory activity of dry ethanol extracts of <i>Artemisia</i> spp. on SARS‐CoV‐2 replication <i>in vitro</i>. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2022. [DOI: 10.18470/1992-1098-2022-4-111-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim. In vitro analysis of the inhibitory activity of dry ethanol extracts of some Artemisia spp. growing in the Novosibirsk region for SARS‐CoV‐2 replication.Materials and Methods. The laboratory strain SARS‐CoV‐2/human/RUS/Nsk‐FRCFTM‐1/2020 was passed on Vero cell culture. Dry ethanol extracts of plant parts (stems, flowers, leaves) of six types of Artemisia were prepared. The types used were: A. vulgaris L.; A. glauca (Pall. Ex Willd.); A. dracunculus L. (from three growth locations); A. absinthium L.; A. frigida Willd.; and A. sieversiana Ehrh. ex Willd. Dry extracts were dissolved in DMSO. In vitro analysis of the inhibitory activity of extracts against SARS‐CoV‐2 (an infectious titer of 103 TCID50/ml) replication was performed in a Vero E6 cell culture. To do this, the method of direct inactivation (neutralization) of virions, as well as schemes of “preventive” and “therapeutic” of cells, were used. Comparison samples were dry ethanol extracts of Inonotus obliquus, Syzygium aromaticum L. and Camellia sinensis L.Results. Extracts of leaves of Artemisia spp. proved to be most effective in direct inactivation of virions. By equal and decreasing activity these are the species: A. vulgaris; A. dracunculus*; A. absinthium; A. dracunculus***; A. dracunculus**; A. frigidа; A. glauca; and A. sieversiana with a 50% effective concentration of range 1.10±0.24 – 11.72±2.89 μg/ml. Extracts of flowers of A. vulgaris, A.glauca, A. dracunculus*, A. dracunculus**, A. dracunculus***, A. frigida and A. sieversiana also contain biologically active substances which act both destructively on virions and after the virus has entered cells. For extracts of stems consistently high values of EC50 were found for A. glauca (6.84±1.35; 7.81±2.00 and 14.06±3.06 μg/ml) according to the results of three experimental schemes.Conclusion. The results obtained can become the basis for the development of inexpensive domestic drugs for the treatment and/or prevention of COVID‐19.
Collapse
Affiliation(s)
- Е. I. Каzachinskaia
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; “Vector” State Research Centre of Virology and Biotechnology, Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare
| | - V. D. Romanova
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. V. Ivanоva
- “Vector” State Research Centre of Virology and Biotechnology, Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare
| | - А. А. Chepurnov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | | | - Yu. V. Коnonova
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - D. N. Shaulo
- Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences
| | | | - А. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| |
Collapse
|
9
|
Bajrai LH, El-Kafrawy SA, Hassan AM, Tolah AM, Alnahas RS, Sohrab SS, Rehan M, Azhar EI. In vitro screening of anti-viral and virucidal effects against SARS-CoV-2 by Hypericum perforatum and Echinacea. Sci Rep 2022; 12:21723. [PMID: 36522420 PMCID: PMC9754313 DOI: 10.1038/s41598-022-26157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypericum perforatum and Echinacea are reported to have antiviral activities against several viral infections. In this study, H. perforatum (St. John's Wort) and Echinacea were tested in vitro using Vero E6 cells for their anti-viral effects against the newly identified Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) through its infectious cycle from 0 to 48 h post infection. The hypericin of H. perforatum and the different parts (roots, seeds, aerial) of two types of Echinacea species (Echinacea purpurea and Echinacea angustifolia) were tested for their anti-viral activities to measure the inhibition of viral load using quantitative real-time polymerase chain reaction (qRT-PCR) on cell culture assay. Interestingly, the H. perforatum-Echinacea mixture (1:1 ratio) of H. perforatum and Echinacea was tested as well on SARS-CoV-2 and showed crucial anti-viral activity competing H. perforatum then Echinacea effects as anti-viral treatment. Therefore, the results H. perforatum and Echinacea species, applied in this study showed significant anti-viral and virucidal effects in the following order of potency: H. perforatum, H. perforatum-Echinacea mixture, and Echinacea on SARS-CoV-2 infectious cycle. Additionally, molecular simulation analysis of the compounds with essential proteins (Mpro and RdRp) of the SARS-CoV-2 revealed the most potent bioactive compounds such as Echinacin, Echinacoside, Cyanin, Cyanidin 3-(6''-alonylglucoside, Quercetin-3-O-glucuronide, Proanthocyanidins, Rutin, Kaempferol-3-O-rutinoside, and Quercetin-3-O-xyloside. Thus, based on the outcome of this study, it is demanding the setup of clinical trial with specific therapeutic protocol.
Collapse
Affiliation(s)
- Leena Hussein Bajrai
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif Ali El-Kafrawy
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Mohamed Hassan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabig, Saudi Arabia
| | - Rabie Saleh Alnahas
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sayed Sartaj Sohrab
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
10
|
Gomaa AA, Abdel-Wadood YA, Gomaa MA. Glycyrrhizin and boswellic acids, the golden nutraceuticals: multitargeting for treatment of mild-moderate COVID-19 and prevention of post-COVID cognitive impairment. Inflammopharmacology 2022; 30:1977-1992. [PMID: 36136251 PMCID: PMC9493173 DOI: 10.1007/s10787-022-01062-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
Breakthrough infections have been reported in fully vaccinated persons. Furthermore, rebound symptoms have been reported following the new FDA granted emergency use to combat SARS-CoV-2. Glycyrrhizin (GR) and boswellic acids (BAs) combination has been shown to have highly successful actions against COVID-19 in our recent clinical trial. However, the study is limited by the small sample size, and therefore, the aim of this article is to comprehensively evaluate recent evidence on the efficacy of GR and BAs in preventing the development of COVID-19 in patients with mild and moderate infections and in preventing post-COVID-19 cognitive impairment, which is the most important symptom after recovery from Covid-19 disease. We have reviewed and discussed information published since the outbreak of the COVID-19 pandemic until July 2022 on preclinical (in vivo, in vivo and bioinformatics) and clinical studies related to the antiviral, anti-inflammatory and immunomodulatory activity of Gr and BAs. Sixteen studies were performed to determine the efficacy of GR against SARS-CoV-2. Ten studies were used primarily for in vitro and in vivo assays and six used molecular docking studies. However, the antiviral activity of BAs against SARS-CoV-2 was determined in only five studies using molecular modeling and bioinformatics. All these studies confirmed that GR n and BAs have strong antiviral activity and can be used as a therapeutic agent for COVID-19 and as a protective agent against SARS-CoV-2. They may act by inhibiting the main protease SARS-CoV-2 (Mpro) responsible for replication and blocking spike protein-mediated cell entry. Only seven rigorously designed clinical trials regarding the usefulness of GR, BAs or their combinations in the treatment of COVID-19 have been published as of July 2022. Although there is no clinical study regarding the treatment of cognitive impairment after COVID-19 that has been published so far, several preclinical and clinical studies have demonstrated the potential effect of GR and BAs in the prevention and treatment of cognitive impairment by inhibiting the activity of several molecules that activate inflammatory signaling pathway. In conclusion, the findings of our study documented the beneficial use of GR and BAs to treat SARS-CoV-2 and its variants and prevent post-COVID cognitive impairment. However, it warrants further studies with a larger randomized sample size to ensure that the studies have sufficient evidence of benefits against COVID-19 and post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | | | - Mohamed A Gomaa
- Department of Plastic Surgery, Faculty Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Elkolli M, Elkolli H. The management of COVID 19 by plant extracts, essential oils and phytoconstituents: A review. ACTA PERIODICA TECHNOLOGICA 2022:188-205. [DOI: 10.2298/apt2253188e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome
virus 2 (SARSCoV- 2), it is a virus belonging to the family Coronaviridae
which includes zoonotic viruses infecting mammals and birds. This disease
emerged in December 2019 in Wuhan, China, and quickly developed into a
global pandemic with high mortality rates. The magnitude of the pandemic has
involved a global collaborative scientific response to develop effective
preventive and therapeutic means using both traditional and advanced
techniques. However, to date specific therapies for COVID-19 are not well
established and only a few vaccines are approved for emergency use. Herbal
remedies, especially essential oils (EOs) can boost immunity which plays a
decisive role in the initiation and progression of the disease in the
preliminary stage of a COVID-19 infection. The low cost and availability of
medicinal plants as well as the almost non-existent side effects encourages
their widespread use during the pandemic, hence a great need to identify
plant extracts for anti-COVID 19 use. Although the majority of studies are
done in silico, with little in vivo or in vitro study, we can have an idea
for further later experiments.
Collapse
Affiliation(s)
- Meriem Elkolli
- Laboratory of applied microbiology. University of Sétif, Sétif, Algeria
| | - Hayet Elkolli
- Laboratory of multiphasic polymeric materials, University of Setif, Algeria
| |
Collapse
|