1
|
Poplicean E, Crișan AF, Tudorache E, Hogea P, Mladin R, Oancea C. Unlocking Better Asthma Control: A Narrative Review of Adherence to Asthma Therapy and Innovative Monitoring Solutions. J Clin Med 2024; 13:6699. [PMID: 39597843 PMCID: PMC11594773 DOI: 10.3390/jcm13226699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
This review addresses the ongoing challenges in asthma management, particularly focusing on patient adherence to inhaler therapy. Asthma, a chronic condition characterized by variable respiratory symptoms and airflow obstruction, can lead to significant morbidity and mortality if not properly managed. Despite advances in inhaler technology and therapeutic options, non-adherence remains a significant barrier to optimal asthma control. This review explores both intentional and unintentional non-adherence, influenced by factors such as age, socioeconomic status, and the complexity of inhaler devices. The Global Initiative for Asthma (GINA) provides guidelines aimed at improving adherence through targeted interventions, and this review examines their application. Common inhaler technique errors, including incorrect inhalation speed, not exhaling before inhaling, and failure to hold breath post-inhalation, are identified as major contributors to inadequate asthma control. Furthermore, the review explores the emerging role of electronic monitoring devices (EMDs), such as CapMedic and DigiHaler, which offer real-time feedback to enhance inhaler technique and adherence. The role of biomarkers in assessing adherence and the potential of personalized treatment strategies, including biologic therapies, are also discussed. Overall, addressing adherence requires a comprehensive approach that integrates patient education, tailored interventions, and technological innovations to achieve better clinical outcomes in asthma management.
Collapse
Affiliation(s)
- Emanuel Poplicean
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.P.); (R.M.)
- Center of Research and Innovation in Personalized Medicine of Respiratory Disease (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.T.); (P.H.); (C.O.)
| | - Alexandru Florian Crișan
- Pulmonary Rehabilitation Center, Clinical Hospital of Infectious Diseases and Pulmonology, “Victor Babes”, Gheorghe Adam Street 13, 300310 Timisoara, Romania
- Research Center for the Assessment of Human Motion, Functionality and Disability (CEMFD), “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Emanuela Tudorache
- Center of Research and Innovation in Personalized Medicine of Respiratory Disease (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.T.); (P.H.); (C.O.)
- Pulmonology University Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Patricia Hogea
- Center of Research and Innovation in Personalized Medicine of Respiratory Disease (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.T.); (P.H.); (C.O.)
- Pulmonology University Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Roxana Mladin
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.P.); (R.M.)
- Center of Research and Innovation in Personalized Medicine of Respiratory Disease (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.T.); (P.H.); (C.O.)
| | - Cristian Oancea
- Center of Research and Innovation in Personalized Medicine of Respiratory Disease (CRIPMRD), “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (E.T.); (P.H.); (C.O.)
- Pulmonology University Clinic, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Spasov GH, Rossi R, Vanossi A, Cottini C, Benassi A. A Critical Analysis of the CFD-DEM Simulation of Pharmaceutical Aerosols Deposition in Upper Intra-Thoracic Airways: Considerations on Aerosol Transport and Deposition. Pharmaceutics 2024; 16:1119. [PMID: 39339157 PMCID: PMC11434992 DOI: 10.3390/pharmaceutics16091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict the transport and deposition of the aerosol. The results are compared to experimental and numerical data available in the literature to study and quantify the impact of the modeling parameters and numerical assumptions. Even if the total deposition compares very well with the reference data, it is clear from the present work how local deposition results can depend significantly upon spatial discretization and boundary conditions adopted to represent the respiratory act. The modeling of turbulent fluctuations in the airflow is also found to impact the local deposition and, to a minor extent, the flow characteristics at the inlet of the computational domain. Using the CFD-DEM model, it was also possible to calculate the airflow and particles splitting at bifurcations, which were found to depart from the assumption of being equally distributed among branches adopted by some of the simplified deposition models. The results thus suggest the need for further studies towards improving the quantitative prediction of aerosol transport and deposition in the human airways.
Collapse
Affiliation(s)
- Georgi H. Spasov
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), 34149 Trieste, Italy
| | | | - Andrea Vanossi
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), 34149 Trieste, Italy
| | - Ciro Cottini
- Chiesi Farmaceutici S.p.A., Largo Belloli, 11A, 43122 Parma, Italy
| | - Andrea Benassi
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
- Chiesi Farmaceutici S.p.A., Largo Belloli, 11A, 43122 Parma, Italy
| |
Collapse
|
3
|
Sadeghi T, Fatehi P, Pakzad L. Effect of Nasal Inhalation on Drug Particle Deposition and Size Distribution in the Upper Airway: With Soft Mist Inhalers. Ann Biomed Eng 2024; 52:1195-1212. [PMID: 38509413 DOI: 10.1007/s10439-023-03423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/10/2023] [Indexed: 03/22/2024]
Abstract
Delivery of drugs to the lungs is commonly achieved using nasal and/or oral breathing-assisted techniques. The route of inhalation can substantially change the fate of inhaled droplets. The Respimat® Soft Mist™ Inhaler (SMI) is a commercially available efficient inhaler with 40-60% effectiveness. In the present study, we used computational fluid dynamics (CFD) with a custom setup to investigate the effect of a combined oral/nasal inhalation route on the SMI's regional droplet deposition, size distribution, and flow field. Our setup used a modified induction port (MIP) to mimic nasal inhalation inside the human respiratory tract. Six different oral/nasal flow rate ratios inside the MIP were applied (total flow rate of 30 l/min). An overall good agreement was achieved between simulation outcomes and in vitro results. Our results confirmed that the combined inhalation route affects the flow field, altering the MIP's droplet deposition and size distribution. The lowest depositional loss, mainly in the mouth area, was observed at oral/nasal flow rate ratios of O/N = 1 and O/N = 2 with 3% and 7.7% values, respectively. Droplets with a 2-5 µm diameter range showed the highest droplet mass inside the MIP at all combined flow rates. We observed less intense vortexes followed by a lower level of turbulent kinetic energy at the oral/nasal ratio of 1. Increasing the relative humidity (RH) at oral/nasal flow rate ratios of 0.07, 1, and 14 led to an increase in droplet deposition at the outlet of the MIP.
Collapse
Affiliation(s)
- Taha Sadeghi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Leila Pakzad
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
4
|
Jubaer H, Thomas M, Farkas D, Kolanjiyil AV, Momin MA, Hindle M, Longest W. Development of an effective two-equation turbulence modeling approach for simulating aerosol deposition across a range of turbulence levels. JOURNAL OF AEROSOL SCIENCE 2024; 175:106262. [PMID: 38164243 PMCID: PMC10698304 DOI: 10.1016/j.jaerosci.2023.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 01/03/2024]
Abstract
Pharmaceutical aerosol systems present a significant challenge to computational fluid dynamics (CFD) modeling based on the need to capture multiple levels of turbulence, frequent transition between laminar and turbulent flows, anisotropic turbulent particle dispersion, and near-wall particle transport phenomena often within geometrically complex systems over multiple time scales. Two-equation turbulence models, such as the k - ω family of approximations, offer a computationally efficient solution approach, but are known to require the use of near-wall (NW) corrections and eddy interaction model (EIM) modifications for accurate predictions of aerosol deposition. The objective of this study was to develop an efficient and effective two-equation turbulence modeling approach that enables accurate predictions of pharmaceutical aerosol deposition across a range of turbulence levels. Key systems considered were the traditional aerosol deposition benchmark cases of a 90-degree bend (R e = 6,000 ) and a vertical straight section of pipe (R e = 10,000 ), as well as a highly complex case of direct-to-infant (D2I) nose-to-lung pharmaceutical aerosol delivery from an air-jet dry powder inhaler (DPI) including a patient interface and infant nasal geometry through mid-trachea (500 < R e < 7,000 ). Of the k - ω family of models, the low Reynolds number (LRN) shear stress transport (SST) approach was determined to provide the best agreement with experimental aerosol deposition data in the D2I system, based on an improved simulation of turbulent jet flow that frequently occurs in DPIs. Considering NW corrections, a new correlation was developed to quantitatively predict best regional values of the y + l i m i t , within which anisotropic NW turbulence is approximated. Considering EIM modifications, a previously described drift correction approach was implemented in pharmaceutical aerosol simulations for the first time. Considering all model corrections and modifications applied to the D2I system, regional relative errors in deposition fractions between CFD predictions and new experimental data were improved from 19-207% (no modifications) to 2-15% (all modifications) with a notable decrease in computational time (up to ∼15%). In conclusion, the highly efficient two-equation k - ω models with physically realistic corrections and modifications provided a viable, efficient and accurate approach to simulate the transport and deposition of pharmaceutical aerosols in complex airway systems that include laminar, turbulent and transitional flows.
Collapse
Affiliation(s)
- Hasan Jubaer
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Morgan Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Arun V. Kolanjiyil
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
| | - Mohammad A.M. Momin
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P.O. Box 843015, Richmond, VA, 23284-3015, USA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Jahed M, Kozinski J, Pakzad L. The impact of actuator nozzle and surroundings condition on drug delivery using pressurized-metered dose inhalers. Biomech Model Mechanobiol 2023; 22:2117-2133. [PMID: 37815674 DOI: 10.1007/s10237-023-01754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/16/2023] [Indexed: 10/11/2023]
Abstract
The most commonly used method to deliver aerosolized drugs to the lung is with pressurized metered-dose inhalers (pMDIs). The spray actuator is a critical component of pMDI, since it controls the atomization process by forming aerosol plumes and determining droplet size distribution. Through computational fluid dynamics (CFD) simulations, this study investigated the effect of two different nozzle types (single conventional and twin nozzles) on drug deposition in the mouth-throat (MT) region. We also studied the behavior of aerosol plumes in both an open-air environment and the MT geometry. Our study revealed that spray aerosol generated in an unconfined, open-air environment with no airflow behaves distinctly from spray introduced into the MT geometry in the presence of airflow. In addition, the actuator structure significantly impacts the device's efficacy. In the real MT model, we found that the twin nozzle increases drug deposition in the MT region, and its higher aerosol velocity negatively affects its efficiency.
Collapse
Affiliation(s)
- Mahsa Jahed
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| | - Janusz Kozinski
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| | - Leila Pakzad
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada.
| |
Collapse
|
6
|
Usmani O, Li G, De Backer J, Sadafi H, Wu L, Marshall J. Modeled small airways lung deposition of two fixed-dose triple therapy combinations assessed with in silico functional respiratory imaging. Respir Res 2023; 24:226. [PMID: 37742015 PMCID: PMC10517457 DOI: 10.1186/s12931-023-02534-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Small airways disease plays a key role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and is a major cause of obstruction; therefore, it is a critical pharmacotherapy target. This study evaluated lung deposition of two inhaled corticosteroid (ICS)/long-acting β2-agonist/long-acting muscarinic antagonist single-inhaler triple therapies using in silico functional respiratory imaging (FRI). Deposition was assessed using real-world inhalation profiles simulating everyday use where optimal inhalation may be compromised. METHODS Three-dimensional airway models were produced from 20 patients with moderate-to-very severe COPD. Total, central, and regional small airways deposition as a percentage of delivered dose of budesonide/glycopyrronium/formoterol fumarate dihydrate (BGF) 160/7.2/5 µg per actuation and fluticasone furoate/umeclidinium/vilanterol (FF/UM/VI) 100/62.5/25 µg were evaluated using in silico FRI based on in vitro aerodynamic particle size distributions of each device. Simulations were performed using multiple inhalation profiles of varying durations and flow rates representing patterns suited for a pressurized metered-dose inhaler or dry-powder inhaler (four for BGF, two for FF/UM/VI, with one common profile). For the common profile, deposition for BGF versus FF/UM/VI was compared post-hoc using paired t-tests. RESULTS Across inhalation profiles, mean total lung deposition was consistently higher with BGF (47.0-54.1%) versus FF/UM/VI (20.8-22.7%) and for each treatment component, with greater deposition for BGF also seen in the central large airways. Mean regional small airways deposition was also greater across inhalation profiles with BGF (16.9-23.6%) versus FF/UM/VI (6.8-8.7%) and for each treatment component. For the common profile, total, central, and regional small airways deposition were significantly greater for BGF versus FF/UM/VI (nominal p < 0.001), overall and for treatment components; notably, regional small airways deposition of the ICS components was approximately five-fold greater with budesonide versus fluticasone furoate (16.1% vs. 3.3%). CONCLUSIONS BGF was associated with greater total, central, and small airways deposition for all components versus FF/UM/VI. Importantly, using an identical inhalation profile, there was an approximately five-fold difference in small airways deposition for the ICS components, with only a small percentage of the ICS from FF/UM/VI reaching the small airways. Further research is needed to understand if the enhanced delivery of BGF translates to clinical benefits.
Collapse
Affiliation(s)
- Omar Usmani
- Imperial College London and Royal Brompton Hospital, London, UK
| | - Grace Li
- AstraZeneca, South San Francisco, CA, USA
| | | | | | - Libo Wu
- AstraZeneca, Durham, NC, USA
| | | |
Collapse
|
7
|
Fernández-Parra R, Pey P, Reinero C, Malvè M. Salbutamol transport and deposition in healthy cat airways under different breathing conditions and particle sizes. Front Vet Sci 2023; 10:1176757. [PMID: 37533457 PMCID: PMC10391164 DOI: 10.3389/fvets.2023.1176757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Salbutamol is a bronchodilatator commonly used for the treatment of feline inflammatory lower airway disease, including asthma or acute bronchospasm. As in humans, a pressurized metered dose inhaler (pMDI) is used in conjunction with a spacer and a spherical mask to facilitate salbutamol administration. However, efficacy of inhalation therapy is influenced by different factors including the non-cooperative character of cats. In this study, the goal was to use computational fluid dynamics (CFD) to analyze the impact of breathing patterns and salbutamol particle size on overall drug transport and deposition using a specific spherical mask and spacer designed for cats. A model incorporating three-dimensional cat airway geometry, a commercially available spherical mask, and a 10 cm spacer, was used for CFD analysis. Two peak inspiratory flows were tested: 30 mL/s and 126 mL/s. Simulations were performed with 30s breathing different inspiratory and expiratory times, respiratory frequencies and peaks. Droplet spray transport and deposition were simulated with different particle sizes typical of the drug delivery therapies (1, 5, 10, and 15 μm). The percentage of particle deposition into the device and upper airways decreased with increasing particle diameter during both flows imposed in this cat model. During increased mean ventilatory rate (MVR) conditions, most of the salbutamol was lost in the upper airways. And during decreased MVR conditions, most of the particles remained in suspension (still in hold-up) between the mask and the carina, indicating the need for more than 30 s to be transported. In both flows the percentage of particles traveling to the lung was low at 1.5%-2.3%. In conclusion, in contrast to what has been described in the human literature, the results from this feline model suggest that the percentage of particles deposited on the upper airway decreases with increasing particle diameter.
Collapse
Affiliation(s)
- Rocio Fernández-Parra
- Department of Small Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | - Carol Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, United States
| | - Mauro Malvè
- Department of Engineering, Public University of Navarre (UPNA), Pamplona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
8
|
Julia Altube M, Perez N, Lilia Romero E, José Morilla M, Higa L, Paula Perez A. Inhaled lipid nanocarriers for pulmonary delivery of glucocorticoids: previous strategies, recent advances and key factors description. Int J Pharm 2023:123146. [PMID: 37330156 DOI: 10.1016/j.ijpharm.2023.123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In view of the strong anti-inflammatory activity of glucocorticoids (GC) they are used in the treatment of almost all inflammatory lung diseases. In particular, inhaled GC (IGC) allow high drug concentrations to be deposited in the lung and may reduce the incidence of adverse effects associated with systemic administration. However, rapid absorption through the highly absorbent surface of the lung epithelium may limit the success of localized therapy. Therefore, inhalation of GC incorporated into nanocarriers is a possible approach to overcome this drawback. In particular, lipid nanocarriers, which showed high pulmonary biocompatibility and are well known in the pharmaceutical industry, have the best prospects for pulmonary delivery of GC by inhalation. This review provides an overview of the pre-clinical applications of inhaled GC-lipid nanocarriers based on several key factors that will determine the efficiency of local pulmonary GC delivery: 1) stability to nebulization, 2) deposition profile in the lungs, 3) mucociliary clearance, 4) selective accumulation in target cells, 5) residence time in the lung and systemic absorption and 6) biocompatibility. Finally, novel preclinical pulmonary models for inflammatory lung diseases are also discussed.
Collapse
Affiliation(s)
- María Julia Altube
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - María José Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Leticia Higa
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Al-Jipouri A, Almurisi SH, Al-Japairai K, Bakar LM, Doolaanea AA. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:318. [PMID: 36679199 PMCID: PMC9866119 DOI: 10.3390/polym15020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The rapid and non-invasive pulmonary drug delivery (PDD) has attracted great attention compared to the other routes. However, nanoparticle platforms, like liposomes (LPs) and extracellular vesicles (EVs), require extensive reformulation to suit the requirements of PDD. LPs are artificial vesicles composed of lipid bilayers capable of encapsulating hydrophilic and hydrophobic substances, whereas EVs are natural vesicles secreted by cells. Additionally, novel LPs-EVs hybrid vesicles may confer the best of both. The preparation methods of EVs are distinguished from LPs since they rely mainly on extraction and purification, whereas the LPs are synthesized from their basic ingredients. Similarly, drug loading methods into/onto EVs are distinguished whereby they are cell- or non-cell-based, whereas LPs are loaded via passive or active approaches. This review discusses the progress in LPs and EVs as well as hybrid vesicles with a special focus on PDD. It also provides a perspective comparison between LPs and EVs from various aspects (composition, preparation/extraction, drug loading, and large-scale manufacturing) as well as the future prospects for inhaled therapeutics. In addition, it discusses the challenges that may be encountered in scaling up the production and presents our view regarding the clinical translation of the laboratory findings into commercial products.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia
| | - Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Latifah Munirah Bakar
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Selangor, Shah Alam 40450, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College MAIWP International (UCMI), Kuala Lumpur 68100, Malaysia
| |
Collapse
|
10
|
Xi J, Talaat M, Si XA. Two-way coupling and Kolmogorov scales on inhaler spray plume evolutions from Ventolin, ProAir, and Qvar. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:10915-10940. [PMID: 36124575 DOI: 10.3934/mbe.2022510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Previous numerical studies of pulmonary drug delivery using metered-dose inhalers (MDIs) often neglected the momentum transfer from droplets to fluid. However, Kolmogorov length scales in MDI flows can be comparable to the droplet sizes in the orifice vicinity, and their interactions can modify the spray behaviors. This study aimed to evaluate the two-way coupling effects on spray plume evolutions compared to one-way coupling. The influences from the mass loading, droplet size, and inhaler type were also examined. Large-eddy simulation and Lagrangian approach were used to simulate the flow and droplet motions. Two-way coupled predictions appeared to provide significantly improved predictions of the aerosol behaviors close to the Ventolin orifice than one-way coupling. Increasing the applied MDI dose mass altered both the fluid and aerosol dynamics, notably bending the spray plume downward when applying a dose ten times larger. The droplet size played a key role in spray dynamics, with the plume being suppressed for 2-µm aerosols and enhanced for 20-µm aerosols. The Kolmogorov length scale ratio dp/η correlated well with the observed difference in spray plumes, with suppressed plumes when dp/η < 0.1 and enhanced plumes when dp/η > 0.1. For the three inhalers considered (Ventolin, ProAir, and Qvar), significant differences were predicted using two-way and one-way coupling despite the level and manifestation of these differences varied. Two-way coupling effects were significant for MDI sprays and should be considered in future numerical studies.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA
| | - Mohamed Talaat
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA
| | - Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave, Riverside, CA 92504, USA
| |
Collapse
|
11
|
Talaat M, Si X, Liu X, Xi J. Count- and mass-based dosimetry of MDI spray droplets with polydisperse and monodisperse size distributions. Int J Pharm 2022; 623:121920. [PMID: 35714818 DOI: 10.1016/j.ijpharm.2022.121920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 11/25/2022]
Abstract
Most previous numerical studies of inhalation drug delivery used monodisperse aerosols or quantified deposition as the ratio of deposited particle number over the total number of released particles (i.e., count-based). These practices are reasonable when the aerosols have a sufficiently narrow size range. However, spray droplets from metered-dose inhalers (MDIs) are often polydisperse with a wide size range, so using monodisperse aerosols and/or count-based deposition quantification may lead to significant errors. The objective of this study was to develop a mass-based dosimetry method and evaluate its performance in lung delivery in a mouth-lung (G9) geometry with an albuterol-CFC inhaler. The conventional practices (monodisperse and polydisperse-count-based) were also simulated for comparison purposes. The MDI actuation in the open space was studied using both high-speed imaging and LES-Lagrangian simulations. Experimentally measured spray velocities and size distribution were implemented in the computational model as boundary conditions. Good agreement was achieved between recorded and simulated spray plume evolution spatially and temporally. The polydisperse-mass-based predictions of MDI doses compared favorably with the measurements in all three regions considered (device, mouth-throat, and lung). Significant errors in MDI regional deposition were predicted using the monodisperse and count-based methods. The new polydisperse-mass-based method also predicted local deposition hot spots that were one order of magnitude higher in intensity than the two conventional methods. The results of this study highlighted that a presentative polydisperse size distribution and appropriate deposition quantification method should be applied to reliably predict the MDI drug delivery in the human respiratory tract.
Collapse
Affiliation(s)
- Mohamed Talaat
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| | - Xiuhua Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave, Riverside, CA 92504, USA.
| | - Xiaofei Liu
- US Food and Drug Administration, Division of Pharmaceutical Analysis, 1114 Market Street, St. Louis, MO 63101, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
| |
Collapse
|
12
|
Lower Inspiratory Breathing Depth Enhances Pulmonary Delivery Efficiency of ProAir Sprays. Pharmaceuticals (Basel) 2022; 15:ph15060706. [PMID: 35745624 PMCID: PMC9227885 DOI: 10.3390/ph15060706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/17/2022] Open
Abstract
Effective pulmonary drug delivery using a metered-dose inhaler (MDI) requires a match between the MDI sprays, the patient’s breathing, and respiratory physiology. Different inhalers generate aerosols with distinct aerosol sizes and speeds, which require specific breathing coordination to achieve optimized delivery efficiency. Inability to perform the instructed breathing maneuver is one of the frequently reported issues during MDI applications; however, their effects on MDI dosimetry are unclear. The objective of this study is to systemically evaluate the effects of breathing depths on regional deposition in the respiratory tract using a ProAir-HFA inhaler. An integrated inhaler mouth-throat-lung geometry model was developed that extends to the ninth bifurcation (G9). Large-eddy simulation (LES) was used to compute the airflow dynamics due to concurrent inhalation and orifice flows. The discrete-phase Lagrangian model was used to track droplet motions. Experimental measurements of ProAir spray droplet sizes and speeds were used as initial and boundary conditions to develop the computational model for ProAir-pulmonary drug delivery. The time-varying spray plume from a ProAir-HFA inhaler into the open air was visualized using a high-speed imaging system and was further used to validate the computational model. The inhalation dosimetry of ProAir spray droplets in the respiratory tract was compared among five breathing depths on a regional, sub-regional, and local basis. The results show remarkable differences in airflow dynamics within the MDI mouthpiece and the droplet deposition distribution in the oral cavity. The inhalation depth had a positive relationship with the deposition in the mouth and a negative relationship with the deposition in the five lobes beyond G9 (small airways). The highest delivery efficiency to small airways was highest at 15 L/min and declined with an increasing inhalation depth. The drug loss inside the MDI was maximal at 45–60 L/min. Comparisons to previous experimental and numerical studies revealed a high dosimetry sensitivity to the inhaler type and patient breathing condition. Considering the appropriate inhalation waveform, spray actuation time, and spray properties (size and velocity) is essential to accurately predict inhalation dosimetry from MDIs. The results highlight the importance of personalized inhalation therapy to match the patient’s breathing patterns for optimal delivery efficiencies. Further complimentary in vitro or in vivo experiments are needed to validate the enhanced pulmonary delivery at 15 L/min.
Collapse
|
13
|
Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals (Basel) 2022; 15:ph15040389. [PMID: 35455386 PMCID: PMC9031202 DOI: 10.3390/ph15040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide-based drugs have attracted extensive attention from the medical and pharmaceutical industry because of their relatively high safety and efficacy. However, most of the peptide drugs approved are administrated by injection, which can easily cause poor patient compliance. In this circumstance, pulmonary administration as an alternative to injection administration can not only avoid the above issue but also accelerate the absorption rate of peptide drugs and improve bioavailability. Among the pulmonary delivery systems available on the market, metered-dose inhalers (MDIs) have emerged as appealing candidates for pulmonary delivery systems with clinical translational value, owing to their many merits, including portable, easy-to-operate, and cost-effective properties. Nevertheless, the industrialization of peptide drugs-containing MDIs encounters a bottleneck of low drug loading, owing to the incompatibility between the propellant and the peptide drugs, which cannot be effectively overcome by the current carrier particle encapsulation strategy. Herein, we put forward the following strategies: (1) To screen amphiphilic materials with high surface activity and strong interaction with peptide drugs; (2) To construct a chemical connection between peptide drugs and amphiphilic substances; (3) To optimize the cosolvent for dispersing peptide drugs. We suppose these strategies have the potential to defeat the bottleneck problem and provide a new idea for the industrialization of peptide drugs-containing MDIs.
Collapse
|