1
|
Aini Khairunnisa N, Yuandani, Raina Nasution H, Sari Utami D, Frimayanti N, Jantan I, Nirmal N, Wira Septama A. A Synergistic Interaction Between Citrus Hystrix Peel Essential Oil and Tetracycline and Evaluation of their Antibacterial Mechanism of Action in Vitro and in Silico Against Escherichia Coli. Chem Biodivers 2025; 22:e202401291. [PMID: 39246102 DOI: 10.1002/cbdv.202401291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Citrus hystrix essential oil (CHEO) have shown various pharmacological properties including antibacterial activity. This EO also possessed antibacterial effect against foodborne pathogens. There is less information available about the synergy interaction between CHEO and tetracycline, as well as their mechanism of action. Therefore, this study was conducted to evaluate the synergistic effect of CHEO and tetracycline against clinical isolate of Escherichia coli. Antibiofilm, bacteriolytic, and efflux pump inhibitor activities were also performed. The chemical composition of CHEO was analysed using GC-MS. Three major compounds, D-limonene (25.02 %), β-pinene (23.37 %), and β-sabinene (22.20 %) were identified. CHEO exhibited moderate antibacterial activity with MIC value of 250 μg/mL. The combination of CHEO (7.8 μg/mL) and tetracycline (62.5 μg/mL) produced a synergistic effect on E. coli with fractional inhibitory concentration index of 0.5. This mixture inhibited biofilm formation in E. coli. The combination of 7.8 μg/mL CHEO and 62.5 μg/mL tetracycline demonstrated bacteriolytic activity. In addition, the CHEO at 250 μg/mL showed a significant effect in inhibiting efflux pump. D-limonene has a binding free energy value of -20.13 kcal/mol with ompA transmembrane domain of E. coli. This finding indicates that CHEO has a potency to be developed as natural antibacterial against E. coli.
Collapse
Affiliation(s)
| | - Yuandani
- Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | | | - Dinda Sari Utami
- Department of Pharmacy, Universitas Muslim Nusantara Al Washliyah, Medan, 20147, Indonesia
| | - Neni Frimayanti
- Sekolah Tinggi Ilmu Farmasi Riau, Jln Kamboja Panam, Pekanbaru, 28293, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Jawa Barat, 16911, Indonesia
| |
Collapse
|
2
|
Sandech N, Yang MC, Juntranggoor P, Rukthong P, Gorelkin P, Savin N, Timoshenko R, Vaneev A, Erofeev A, Wichaiyo S, Pradidarcheep W, Maiuthed A. Benja-ummarit induces ferroptosis with cell ballooning feature through ROS and iron-dependent pathway in hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118672. [PMID: 39127118 DOI: 10.1016/j.jep.2024.118672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/22/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benja-ummarit (BU), a traditional Thai herbal formula, has been prescribed by traditional Thai practitioners for the treatment of liver cancer. Clinical trials of BU have shown an increase in overall survival in hepatocellular carcinoma (HCC) patients, including stage 1-3 (with or without prior standard chemotherapy) and terminal stage. The clinical outcomes differ from those of other apoptosis-based conventional chemotherapies. The molecular mechanisms underlying the anti-cancer properties of BU remain unclear. AIM OF STUDY To investigate BU-induced ferroptosis through morphological and molecular analyses of HCC cell lines and HCC rat tissues. METHODOLOGY Cytotoxicity of BU extract in HepG2 and HuH-7 cells, with or without LX-2 in 2D and 3D cultures, was determined through MTT assay and by observing spheroid formation, respectively, as compared to sorafenib. Morphological changes and the cellular ultrastructure of the treated cells were evaluated by light microscopy and transmission electron microscopy (TEM), respectively. In addition, alterations in ferroptosis protein markers in both cell lines and rat liver tissue were determined using western blot analysis and immunohistochemical staining, respectively. To investigate the pathways mediating ferroptosis, cells were pretreated with an iron chelator to confirm the iron-dependent ferroptosis induced by the BU extract. Intracellular ROS, a mediator of ferroptosis, was measured using a scanning ion conductance microscope (SICM). SICM was also used to determine cellular stiffness. The lipid profiles of BU-treated cells were studied using LC-MS/MS. RESULTS The BU extract induced cell death under all HCC cell culture conditions. The BU-IC50 in HepG2 and HuH-7 were 31.24 ± 4.46 μg/mL and 23.35 ± 0.27 μg/mL, respectively as determined by MTT assay. In co-culture with LX-2, BU exhibited a similar trend of cytotoxicity in both HepG2 and HuH-7 cells. Light microscopy showed cell ballooning features with intact plasma membranes, and TEM microscopy showed mitochondrial swelling and reduced mitochondrial cristae in BU-treated cells. BU promotes intracellular iron levels by increasing DMT1 and NCOA4 expression and decreasing FTH1 expression. BU also suppressed the cellular antioxidant system by lowering CD98, NRF2, and GPX4 expression, and promoting KEAP1 expression. IHC results of HCC rat liver tissues showed the absence of DMT1 and high expression of GPX4 in the tumor area. Pre-treatment with an iron chelator partially restored cell viability and shifted the mode of cell death to a more apoptosis-like morphology in the BU-treated group. The SICM showed increased intracellular ROS levels and cellular stiffness 24 h after BU treatment. In more detail of BU-mediated ferroptosis, cellular lipid profiling revealed increased expression of 3 polyunsaturated lipids, which are highly susceptible to lipid peroxidation, in BU-treated cells. DISCUSSION Alterations in intracellular iron levels, ROS levels, and cellular lipid composition have been previously reported in cancer cells. Therefore, targeting the iron-dependent ROS pathway and polyunsaturated lipids via BU-induced ferroptosis may be more cancer-specific than apoptosis-based cancer drugs. These observations are in accordance with the clinical outcomes of BU. The ferroptosis-inducing mechanism of BU makes it an extremely promising novel drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Doctor of Philosophy Program in Innovative Anatomy, Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Meng Chieh Yang
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pichakorn Juntranggoor
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Pattarawit Rukthong
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakornnayok, 26120, Thailand; Center for Excellence in Plant and Herbal Innovation Research, Strategic Wisdom and Research Institute, Srinakharinwirot University, Nakornnayok, 26120, Thailand
| | - Petr Gorelkin
- ICAPPIC Limited, London, E8 3PN, United Kingdom; Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Nikita Savin
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Roman Timoshenko
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia
| | - Alexander Vaneev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Erofeev
- Research laboratory of biophysics, National University of Science and Technology (MISIS), Moscow, 119049, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Surasak Wichaiyo
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Arnatchai Maiuthed
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand; Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Hieu NH, Vinh An TT, Thu NM, Son NH, Hoang Yen LD, Dat NM, Hoai Nam NT, Dat TD, Cong Minh DT, Hanh NT, Ngoc Hieu NT. Characterization and biological prospects of various calcined temperature-V 2O 5 nanoparticles synthesized by Citrus hystrix fruit extract. Biochem Biophys Res Commun 2024; 719:150043. [PMID: 38735206 DOI: 10.1016/j.bbrc.2024.150043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
In this study, a simple green synthesis of vanadium pentoxide nanoparticles (VNPs) was prepared by the extract of Kaffir lime fruit (Citrus hystrix) as a green reducing and stabilizing agent, along with the investigation of calcination temperature was carried out at 450 and 550 °C. It was affirmed that, at higher temperature (550 °C), the VNPs possessed a high degree crystalline following the construction of (001) lattice diffraction within an increase in crystalline size from 47.12 to 53.51 nm, although the band gap of the materials at 450 °C was lower than that of the VNPs-550 (2.53 versus 2.66 eV, respectively). Besides, the materials were assessed for the potential bioactivities toward antibacterial, antifungal, DNA cleavage, anti-inflammatory, and hemolytic performances. As a result, the antibacterial activity, with minimal inhalation concentration (MIC) < 6.25 μg/mL for both strains, and fungicidal one of the materials depicted the dose-dependent effects. Once, both VNPs exhibited the noticeable efficacy of the DNA microbial damage, meanwhile, the outstanding anti-inflammatory agent was involved with the IC50 of 123.636 and 227.706 μg/mL, accounting for VNPs-450 and VNPs-550, respectively. Furthermore, this study also demonstrated the hemolytic potential of the VNPs materials. These consequences declare the prospects of the VNPs as the smart and alternative material from the green procedure in biomedicine.
Collapse
Affiliation(s)
- Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Truong Thien Vinh An
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Minh Thu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Hoang Son
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Le Dao Hoang Yen
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam; University of Science (HCMUS-VNU), 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Viet Nam
| | - Nguyen Minh Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Hoai Nam
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tran Do Dat
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Dang Thanh Cong Minh
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Hanh
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi Ngoc Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Kusjuriansah K, Rodhiyah M, Syifa NA, Luthfianti HR, Waresindo WX, Hapidin DA, Suciati T, Edikresnha D, Khairurrijal K. Composite Hydrogel of Poly(vinyl alcohol) Loaded by Citrus hystrix Leaf Extract, Chitosan, and Sodium Alginate with In Vitro Antibacterial and Release Test. ACS OMEGA 2024; 9:13306-13322. [PMID: 38524413 PMCID: PMC10955567 DOI: 10.1021/acsomega.3c10143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
Citrus hystrix leaves have been used traditionally as a spice, a traditional medicine for respiratory and digestive disorders, and a remedy for bacterial infections. This study reports on the synthesis of composite hydrogels using the freeze-thaw method with poly(vinyl alcohol) (PVA) as the building block loaded by C. hystrix leaf extract (CHLE). Additionally, chitosan (CS) and sodium alginate (SA) were also loaded, respectively, to increase the antibacterial activity and to control the extract release of the composite hydrogels. The combinations of the compositions were PVA, PVA/CHLE, PVA/CHLE/CS, PVA/CHLE/SA, and PVA/CHLE/SA/CS. The internal morphology of the hydrogels shows some changes after the PVA/CHLE hydrogel was loaded by CS, SA, and SA/CS. The analysis of the Fourier transform infrared (FTIR) spectra confirmed the presence of PVA, CHLE, CS, and SA in the composite hydrogels. From the X-ray diffraction (XRD) characterization, it was shown that the composite hydrogels maintained their semicrystalline properties with decreasing crystallinity degree after being loaded by CS, SA, and SA/CS, as also supported by differential scanning calorimetry (DSC) characterization. The compressive strength of the PVA/CHLE hydrogel decreases after the loading of CS, SA, and SA/CS, so that it becomes more elastic. Despite being loaded in the composite hydrogels, the CHLE retained its antibacterial activity, as evidenced in the in vitro antibacterial test. The loading of CS succeeded in increasing the antibacterial activity of the composite hydrogels, while the loading of SA resulted in the decrease of the antibacterial activity. The release of extract from the composite hydrogels was successfully slowed down after the loading of CS, SA, and SA/CS, resulting in a controlled release following the pseudo-Fickian diffusion. The cytotoxic activity test proved that all hydrogel samples can be used safely on normal cells up to concentrations above 1000 μg/mL.
Collapse
Affiliation(s)
- Kusjuriansah Kusjuriansah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Marathur Rodhiyah
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Nabila Asy Syifa
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Halida Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Dian Ahmad Hapidin
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan
Ganesa 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- University
Center of Excellence—Nutraceutical, Bioscience and Biotechnology
Research Center, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia
- Department
of Physics, Faculty of Sciences, Institut
Teknologi Sumatera, Jl.
Terusan Ryacudu, Lampung 35365, Indonesia
| |
Collapse
|
5
|
Singab ANB, Elhawary EA, Elkhawas YA, Fawzy IM, Moussa AY, Mostafa NM. Role of Nutraceuticals in Obesity Management: A Mechanism and Prospective Supported by Molecular Docking Studies. J Med Food 2024; 27:176-197. [PMID: 38324003 DOI: 10.1089/jmf.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Obesity and its comorbidities represent a major health problem worldwide. Treatment by reducing food intake and physical activity interventions has limited success especially with elderly people with chronic diseases. Nutraceuticals are naturally originated and successfully used for their physiological and nutritional benefit in health care. They might be alternative means to help lose weight and reduce obesity-associated metabolic disorders with the improvement of health, delay the aging process, prevention of chronic diseases, increase of life expectancy, or support to the structure or function of the body. The current study enumerates the inherent role of nutraceuticals in the management of obesity and its related comorbidities. The study is supported with the molecular docking studies discussing the mechanism of action. An attempt to optimize the role of nutraceuticals is made in this article in addition to widen the scope of its use in this chronic worldwide disease.
Collapse
Affiliation(s)
- Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, Egypt
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yasmin A Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Sreepian PM, Rattanasinganchan P, Sreepian A. Antibacterial Efficacy of Citrus hystrix (Makrut Lime) Essential Oil against Clinical Multidrug-Resistant Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Isolates. Saudi Pharm J 2023. [DOI: 10.1016/j.jsps.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
7
|
Lubinska-Szczygeł M, Kuczyńska-Łażewska A, Rutkowska M, Polkowska Ż, Katrich E, Gorinstein S. Determination of the Major By-Products of Citrus hystrix Peel and Their Characteristics in the Context of Utilization in the Industry. Molecules 2023; 28:molecules28062596. [PMID: 36985567 PMCID: PMC10052365 DOI: 10.3390/molecules28062596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Kaffir lime (Citrus hystrix) is a popular citrus in Southeast Asia. Despite the growing interest in the peel of the fruit, the leaves are the most frequently used part of the fruit. The aim of the study was to determine the main by-products of the peel, such as pectins, minerals, essential oil, and bioactive compounds, and to evaluate the possibility of using them in various branches of industry. In the study of the essential oil obtained by hydrodistillation performed using the TGA chromatography technique (GC-MS), sabinene (31.93%), β-pinene (26%), and limonene (19%) were selected as the most abundant volatile compounds. Nine microelements (Fe, Zn, Cu, Mn, Co, Ni, Cr, Mo, and V), four macroelements (Mg, Ca, K, and Na), and seven ballast substances (Cd, Hg, Pb, Al, V, Sr, and Pt) were also determined using the microwave plasma-atomic emission spectrometry technique (MP-AES). In the case of microelements, iron 32.72 ± 0.39 mg/kg DW (dry weight) had the highest concentration. In the case of macroelements, the calcium content was 9416 ± 34 mg/kg DW. Optimization of the pectin extraction was also performed by selecting citric acid and obtaining a yield of 7.6–17.6% for acid extraction and 9.9–28.2% for ultrasound-assisted extraction (UAE), depending on the temperature used. The obtained pectins were characterized by the degree of methylation, galacturonic acid content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, and DSC (differential scanning calorimetry) analysis. Among bioactive compounds, the contents of polyphenols (22.63 ± 2.12 mg GAE/g DW), flavonoids (2.72 ± 0.25 mg CE/g DW, vitamin C (2.43 ± 0.19 mg Asc), xantoproteins + carotenes (53.8 ± 4.24 ug), anthocyanins (24.8 ± 1.8 mg CGE/kg DW), and chlorophylls A and B (188.5 ± 8.1, 60.4 ± 3.23 µg/g DW) were evaluated. Antioxidant capacity using (cupric ion-reducing antioxidant capacity) CUPRAC and DPPH assays was also provided with the results of 76.98 ± 8.1, and 12.01 ± 1.02 µmol TE/g DW, respectively.
Collapse
Affiliation(s)
- Martyna Lubinska-Szczygeł
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Correspondence: (M.L.-S.); (Ż.P.)
| | - Anna Kuczyńska-Łażewska
- Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Correspondence: (M.L.-S.); (Ż.P.)
| | - Elena Katrich
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (E.K.)
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (E.K.)
| |
Collapse
|
8
|
Sorrenti V, Burò I, Consoli V, Vanella L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int J Mol Sci 2023; 24:2019. [PMID: 36768340 PMCID: PMC9916361 DOI: 10.3390/ijms24032019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
9
|
Srimurugan S, K Ravi A, Vijaya Anand A, Muthukrishnan S. Biosynthesis of silver nanoparticles using Citrus hystrix leaf extract and evaluation of its anticancer efficacy against HeLa cell line. Drug Dev Ind Pharm 2022; 48:480-490. [PMID: 36165580 DOI: 10.1080/03639045.2022.2130352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cervical cancer continues to be the leading cause of death worldwide despite the availability of many therapeutic options. Biogenic synthesis of metal nanoparticles paves a new way for the development of targeted drug delivery modalities of cancer therapeutics. OBJECTIVE In this study, we demonstrate the efficacy of biosynthesized silver nanoparticles from methanolic leaf extract of Citrus hystrix as an anticancer agent used against cervical cancer cell line HeLa. METHODS The addition of 1mM silver nitrate to methanolic leaf extract of Citrus hystrix resulted in the biosynthesis of silver nanoparticles during the reaction mixture and was incubated in the dark for 1 hour at pH 9 with gentle stirring. Characterization of synthesized NPs was carried out using various analyses. MTT assay, DAPI, AO/EB double staining and RT-PCR analysis were carried out to evaluate the cytotoxic activity of ChAgNPs. RESULTS AND CONCLUSION The absorption band at 430 nm, as shown by UV-Vis spectroscopy revealed the formation of AgNPs. SEM and TEM analysis shows that most of the ChAgNPs were spherical in shape and XRD patterns revealed the crystalline nature of the particles. Moreover, its potent cytotoxic effect on the HeLa cell line was analyzed using MTT assay with an IC50 value of 56 µg/ml by decreasing the cell viability in a dose and time-dependent manner. The induced apoptotic activity was confirmed by DAPI and double staining methods. Autophagic and apoptotic mediated cell death in ChAgNPs treated HeLa cell line were confirmed by staining procedures and RT-PCR methods.
Collapse
Affiliation(s)
- Swetha Srimurugan
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Anjali K Ravi
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arumugam Vijaya Anand
- Department of Human Genetics and Molecular Genetics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
10
|
Kulig M, Galanty A, Grabowska K, Podolak I. Assessment of safety and health-benefits of Citrus hystrix DC. peel essential oil, with regard to its bioactive constituents in an in vitro model of physiological and pathological skin conditions. Biomed Pharmacother 2022; 151:113151. [PMID: 35598364 DOI: 10.1016/j.biopha.2022.113151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Citrus hystrix DC. peel essential oil (ChEO) has been reported to have many biological activities and is promoted for topical application. However, its effect on skin functioning has not yet been studied. This study aimed to evaluate its safety for normal skin cells as well as its potential activity against human melanoma. In addition, pro-inflammatory and anti-inflammatory activity was assessed, as well as inhibitory effects on important skin enzymes: tyrosinase and hyaluronidase. To better understand the complexity of the action of ChEO and the role of individual components, the study also included an evaluation of the activity of its main constituents: limonene, β-pinene, and terpinen-4-ol as well as two mixtures of these compounds, specially designed for this purpose: M1 in equal proportions (1:1:1) and M2 in proportions mimicking those found in the ChEO (2.6:1.7:1). The results showed that the essential oil of the C. hystrix peel, as well as its major components, was not cytotoxic to normal human skin cells representing various skin layers, namely keratinocytes (HaCaT), melanocytes (HEM), and fibroblasts (HDF), even after prolonged exposure of 72 h. The pro-inflammatory effect of ChEO, tested by caspase-1 activation in HaCaT cells, was less pronounced compared to limonene, β-pinene and terpinen-4-ol, and generally very low. On the other hand, its anti-inflammatory effect was noticeable and was half the potency of diclofenac sodium used as the reference drug. Although the anti-hyaluronidase activity of C. hystrix peel essential oil was lower compared to β-pinene and terpinen-4-ol, ChEO revealed fairly high anti-tyrosinase activity, with an enzyme inhibition level of over 80% at a concentration of 150-220 μg/ml. Studies on the potential anti-melanoma effect were performed using the LDH assay on three human cell lines of varying degrees of malignancy, namely WM793, A375, and HTB140. ChEO was more active than the tested single compounds or their mixtures. WM793 cells were found to be most susceptible, while HTB140 and A375 cells were slightly more resistant (IC50 59, 88 and 70 μg/ml, respectively). Our data indicate that ChEO is safe for the skin and has a perspective as an anti-melanoma agent.
Collapse
Affiliation(s)
- Magdalena Kulig
- Department of Pharmacognosy, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland.
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
11
|
Choo CO, Chua BL, Figiel A, Jałoszyński K, Wojdyło A, Szumny A, Łyczko J, Chong CH. Specific Energy Consumption and Quality of
Citrus Hystrix
Leaves Treated using Convective and Microwave Vacuum Methods. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Choong Oon Choo
- School of Computer Science and Engineering Faculty of Innovation and Technology, Taylor’s University, 1, Jalan Taylors, 47500 Subang Jaya Malaysia
| | - Bee Lin Chua
- School of Computer Science and Engineering Faculty of Innovation and Technology, Taylor’s University, 1, Jalan Taylors, 47500 Subang Jaya Malaysia
| | - Adam Figiel
- Institute of Agricultural Engineering Wrocław University of Environmental and Life Sciences, Chełmońskiego 37a, 51–630 Wrocław Poland
| | - Klaudiusz Jałoszyński
- Institute of Agricultural Engineering Wrocław University of Environmental and Life Sciences, Chełmońskiego 37a, 51–630 Wrocław Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceuticals Technology Wrocław University of Environmental and Life Sciences Chełmońskiego 37, 51‐630 Wrocław Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis Wrocław University of Environmental and Life Sciences Norwida 25, 50‐375 Wrocław Poland
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis Wrocław University of Environmental and Life Sciences Norwida 25, 50‐375 Wrocław Poland
| | - Chien Hwa Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering University of Nottingham Jalan Broga, 43500 Semenyih Selangor
| |
Collapse
|