1
|
Katamesh AA, Abdel-Bar HM, Break MKB, Hassoun SM, Subaiea GM, Radwan A, Abo El-Enin HA. Tailored Intranasal Albumin Caged Selegiline-α Synuclein siRNA Liposome with Improved Efficiency in Parkinson's Model. Pharmaceutics 2025; 17:243. [PMID: 40006609 PMCID: PMC11859980 DOI: 10.3390/pharmaceutics17020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a progressive neuro-degenerative disorder characterized by α-synuclein aggregation, which promotes neuronal death and accelerates neurodegeneration. Small interfering RNA (siRNA) can reduce α-synuclein levels, but its therapeutic potential is limited by poor stability and delivery challenges. Similarly, Selegiline (Sel), a monoamine oxidase-B (MAO-B) inhibitor, has low bioavailability, restricting its effectiveness. This study aims to develop an intranasal (IN) albumin-coated liposomal system (C-LipSel-siSNCA2) for the co-delivery of Sel and α-synuclein-targeting siRNA (siSNCA2) to enhance brain targeting and therapeutic efficacy. Methods: Liposomes were prepared using the ethanol injection method and optimized via D-optimal design for size, charge, and encapsulation efficiency (EE%). The optimized formulation was coated with human serum albumin (HSA) and characterized for stability, cellular uptake, and gene silencing. In vivo pharmacokinetics and pharmacodynamics were assessed in a rotenone-induced PD rat model to evaluate the motor function, biochemical markers, and brain-targeting efficiency. Results: Optimized liposomes had a particle size of 113.5 ± 6.8 nm, zeta potential of 6.2 ± 0.8 mV, and high EE% (Sel: 92.35%; siRNA: 78.66%). Albumin coating increased size to 136.5 ± 10.3 nm and shifted zeta potential to -13.5 ± 1.4 mV, enhancing stability and targeting. IN administration achieved a 3-fold increase in brain area under the concentration-time curve (AUC) versus intravenous delivery. In PD rats, C-LipSel-siSNCA2 improved motor and non-motor functions, restored dopamine levels, enhanced catalase activity, and reduced MAO-B levels, mitigating dopamine degradation and α-synuclein aggregation. Conclusions: This non-invasive, dual-action nanoplatform offers a targeted therapy for PD, combining siRNA gene silencing and MAO-B inhibition, with the potential for clinical translation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menoufia P.O. Box 32897, Egypt
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Shimaa M. Hassoun
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.H.); (G.M.S.)
| | - Gehad Mohammed Subaiea
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (S.M.H.); (G.M.S.)
| | - Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo 11694, Egypt;
- Egyptian Center for Innovation and Technology Development, Cairo 11512, Egypt
| | | |
Collapse
|
2
|
Upadhyay R, Ghosh P, Desavathu M. Advancement in the Nose-to-Brain Drug delivery of FDA-approved drugs for the better management of Depression and Psychiatric disorders. Int J Pharm 2024; 667:124866. [PMID: 39486490 DOI: 10.1016/j.ijpharm.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The Prevalence of Depressive and Psychiatric disorders is increasing globally, and despite the availability of numerous FDA-approved drugs, treatment remains challenging. Many conventional antidepressants and antipsychotic formulations face issues such as low solubility, high first-pass metabolism, poor bioavailability, inadequate blood-brain barrier penetration, and systemic side effects. These challenges lead to reduced efficacy, slower onset of action, and decreased patient adherence to treatment. To address these problems, recent studies have explored the nose-to-brain route for drug delivery. This method offers several advantages, including non-invasive drug administration, direct access to the brain, rapid onset of action, reduced systemic exposure and side effects, avoidance of first-pass metabolism, enhanced bioavailability, precision dosing, and improved patient compliance. The formulations used for this approach include lipidic nanoparticles, polymeric nanoparticles, nasal gels, cubosomes, niosomes, polymeric micelles, nanosuspensions, nanoemulsions, nanocapsules, and elastosomes. This review analyzes and summarizes the published work on the nose-to-brain delivery of FDA-approved antidepressants and antipsychotic drugs, with a focus on the preparation, characterization, pharmacokinetics, pharmacodynamics, and toxicity profiling of these nanoformulations.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Pappu Ghosh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Madhuri Desavathu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
3
|
Katamesh AA, Abdel-Bar HM, Break MKB, Hassoun SM, Subaiea G, Radwan A, Abo El-Enin HA. Manipulation of Lipid Nanocapsules as an Efficient Intranasal Platform for Brain Deposition of Clozapine as an Antipsychotic Drug. Pharmaceutics 2024; 16:1417. [PMID: 39598541 PMCID: PMC11597305 DOI: 10.3390/pharmaceutics16111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES The blood-brain barrier (BBB) significantly limits the treatment of central nervous system disorders, such as schizophrenia, by restricting drug delivery to the brain. This study explores the potential of intranasal clozapine-loaded lipid nanocapsules (IN LNCsClo) as a targeted and effective delivery system to the brain. METHODS LNCsClo were prepared using the phase inversion technique and characterized in terms of size, zeta potential, entrapment efficiency (EE%), and in vitro drug release. The pharmacokinetic, safety, and pharmacodynamic effects of LNCsClo were then evaluated in a rat model through intranasal (IN) administration and compared with those of oral and intravenous (IV) Clo solutions. RESULTS LNCsClo were prepared using a phase inversion technique, resulting in a nanocarrier with a particle size of 28.6 ± 3.6 nm, homogenous dispersion, and high EE% (84.66 ± 5.66%). Pharmacokinetic analysis demonstrated that IN LNCsClo provided enhanced Clo brain bioavailability, rapid CNS targeting, and prolonged drug retention compared to oral and intravenous routes. Notably, the area under the curve (AUC) for brain concentration showed more than two-fold and eight-fold increases with LNCsClo, compared to IV and oral solutions, respectively, indicating improved brain-targeting efficiency. Safety assessments indicated that LNCsClo administration mitigated Clo-associated metabolic side effects, such as hyperglycemia, insulin imbalance, and liver enzyme alterations. Additionally, pharmacodynamic studies showed that LNCsClo significantly improved antipsychotic efficacy and reduced schizophrenia-induced hyperactivity, while preserving motor function. CONCLUSIONS These results highlight the potential of IN LNCsClo as a novel drug delivery system, offering improved therapeutic efficacy, reduced systemic side effects, and better patient compliance in the treatment of schizophrenia and potentially other CNS disorders.
Collapse
Affiliation(s)
- Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics, Egyptian Drug Authority, Giza 12511, Egypt;
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il 55473, Saudi Arabia
| | - Shimaa M. Hassoun
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Northeast Delta Branch, Department of Pharmacies, Health Insurance Organization, Mansoura 35511, Egypt
| | - Gehad Subaiea
- Department of Pharmacology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Radwan
- Research Department, Academy of Scientific Research and Technology, Cairo 11694, Egypt
- Egyptian Center for Innovation and Technology Development, Cairo 11512, Egypt
| | | |
Collapse
|
4
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
5
|
Tanna V, Vora A, Shah P, Nair AB, Shah J, Sawarkar SP. PLGA Nanoparticles Based Mucoadhesive Nasal In Situ Gel for Enhanced Brain Delivery of Topiramate. AAPS PharmSciTech 2024; 25:205. [PMID: 39237656 DOI: 10.1208/s12249-024-02917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Oral Topiramate therapy is associated with systemic adverse effects including paresthesia,abdominal pain, and fluctuations in plasma levels. The purpose of this research was to develop an intranasal in situ gel based system comprising Topiramate polymeric nanoparticles and evaluate its potential both in vitro and in vivo. Poly (lactic-co-glycolic acid) (PLGA)nanoparticles prepared by nanoprecipitation method were added into the in situ gelling system of Poloxamer 407 and HPMC K4M. Selected formulation (TG5) was evaluated for physicochemical properties, nasal permeation and in vivo pharmacokinetics in rats. PLGAnanoparticles (O1) exhibited low particle size (~ 144.4 nm), good polydispersity index (0.202), negative zeta potential (-12.7 mV), and adequate entrapment efficiency (64.7%). Developed in situ gel showed ideal pH (6.5), good gelling time (35 s), gelling temperature(37℃), suitable viscosity (1335 cP)and drug content of 96.2%. In vitro drug release conformedto Higuchi release kinetics, exhibiting a biphasic pattern of initial burst release and sustained release for 24 h. Oral administration of the drug to Sprague-Dawley rats (G3) showed higher plasma Cmax(504 ng/ml, p < 0.0001) when compared to nasal delivery of in situ gel (G4) or solution (G5). Additionally, AUC0-α of G3 (8786.82 ng/ml*h) was considerably higher than othergroups. Brain uptake data indicates a higher drug level with G4 (112.47 ng /ml) at 12 h when compared to G3. Histopathological examination of groups; G1 (intranasal saline), G2(intranasal placebo), G3, G4, and G5 did not show any lesions of pathological significance. Overall, the experimental results observed were promising and substantiated the potential of developed in situ gel for intranasal delivery.
Collapse
Affiliation(s)
- Vidhi Tanna
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India
| | - Amisha Vora
- Department of Pharmaceutical Chemistry, ShobhabenPratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS University, Mumbai, Maharashtra, India
| | - Pranav Shah
- Department of Pharmaceutics & Pharmaceutical Technology, Maliba Pharmacy College, UkaTarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, Surat, Gujarat, India
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Gandhi S, Shastri DH, Shah J, Nair AB, Jacob S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics 2024; 16:481. [PMID: 38675142 PMCID: PMC11055100 DOI: 10.3390/pharmaceutics16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The nose-to-brain drug-delivery system has emerged as a promising strategy to overcome the challenges associated with conventional drug administration for central nervous system disorders. This emerging field is driven by the anatomical advantages of the nasal route, enabling the direct transport of drugs from the nasal cavity to the brain, thereby circumventing the blood-brain barrier. This review highlights the significance of the anatomical features of the nasal cavity, emphasizing its high permeability and rich blood supply that facilitate rapid drug absorption and onset of action, rendering it a promising domain for neurological therapeutics. Exploring recent developments and innovations in different nanocarriers such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, micelles, nanoemulsions, nanosuspensions, carbon nanotubes, mesoporous silica nanoparticles, and nanogels unveils their diverse functions in improving drug-delivery efficiency and targeting specificity within this system. To minimize the potential risk of nanoparticle-induced toxicity in the nasal mucosa, this article also delves into the latest advancements in the formulation strategies commonly involving surface modifications, incorporating cutting-edge materials, the adjustment of particle properties, and the development of novel formulations to improve drug stability, release kinetics, and targeting specificity. These approaches aim to enhance drug absorption while minimizing adverse effects. These strategies hold the potential to catalyze the advancement of safer and more efficient nose-to-brain drug-delivery systems, consequently revolutionizing treatments for neurological disorders. This review provides a valuable resource for researchers, clinicians, and pharmaceutical-industry professionals seeking to advance the development of effective and safe therapies for central nervous system disorders.
Collapse
Affiliation(s)
- Shivani Gandhi
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Divyesh H. Shastri
- Department of Pharmaceutics, K. B. Institute of Pharmaceutical Education and Research, A Constituent College of Kadi Sarva Vishwavidyalaya, Sarva Vidyalaya Kelavani Mandal, Gh-6, Sector-23, Kadi Campus, Gandhinagar 382023, Gujarat, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
7
|
Xu K, Duan S, Wang W, Ouyang Q, Qin F, Guo P, Hou J, He Z, Wei W, Qin M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1956. [PMID: 38558503 DOI: 10.1002/wnan.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Kunyao Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Ouyang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Abdelmonem R, El-Enin HAA, Abdelkader G, Abdel-Hakeem M. Formulation and characterization of lamotrigine nasal insert targeted brain for enhanced epilepsy treatment. Drug Deliv 2023; 30:2163321. [PMID: 36579655 PMCID: PMC9809415 DOI: 10.1080/10717544.2022.2163321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lamotrigine. (LMT) is a triazine drug has an antiepileptic effect but with low water solubility, dissolution rate and thus therapeutic effect. Spanlastics are nano-vesicular carriers' act as site-specific drug delivery system. Intranasal route could direct the drug from nose to brain and provide a faster and more specific therapeutic effect. Therefore, this study aimed to upload lamotrigine onto nano-vesicles using spanlastic nasal insert delivery for effective epilepsy treatment via overcoming lamotrigine's low solubility and improving its bioavailability. Lamtrigine-loaded nano-spanlastic vesicles were prepared by ethanol injection method. To study different formulation factor's effect on formulations characters; particle size (PS), Zeta potential (ZP), polydispersity index (PDI), entrapment efficiency percentage (EE%) and LMT released amount after 6 h (Q6h); 2^1 and 3^1 full factorial designs were employed. Optimized formula was loaded in lyophilized nasal inserts formulation which were characterized for LMT release and mucoadhesion. Pharmacokinetics studies in plasma and brain were performed on rats to investigate drug targeting efficiency. The optimal nano-spanlastic formulation (F4; containing equal Span 60 amount (100 mg) and edge activator; Tween 80) exhibited nano PS (174.2 nm), high EE% (92.75%), and Q6h > 80%. The prepared nasal inserts (S4) containing 100 mg HPMC has a higher mucoadhesive force (9319.5 dyne/cm2) and dissolution rate (> 80% within 10 min) for rapid in vivo bio-distribution. In vivo studies showed considerable improvement brain and plasma's rate and extent absorption after intranasal administration indicating a high brain targeting efficiency. The results achieved indicate that nano-spanlastic nasal-inserts offer a promising LMT brain targeting in order to maximize its antiepileptic effect.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Hadel A. Abo El-Enin
- Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt,CONTACT Hadel A. Abo El-Enin Department of Pharmaceutics, National organization of drug Control and Research (NODCAR), Giza, Egypt
| | - Ghada Abdelkader
- College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| | - Mohamed Abdel-Hakeem
- Department of pharmaceutical biotechnology, College of biotechnology, Misr University For Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
9
|
Abdel-Monem R, El-Leithy ES, Alaa-Eldin AA, Abdel-Rashid RS. Curcumin/Fusidic Acid Bitherapy Loaded Mixed Micellar Nanogel for Acne Vulgaris Treatment: In Vitro and In Vivo Studies. AAPS PharmSciTech 2023; 24:182. [PMID: 37697137 DOI: 10.1208/s12249-023-02641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023] Open
Abstract
The combination of herbal drugs with a topical antibacterial for managing a chronic disease like acne vulgaris has emerged lately to settle side effects and bacterial multidrug resistance. Mixed micelles (MMs) incorporated into nanogel were explored for hybrid delivery of curcumin (Cur) and fusidic acid (FA) combination presenting a multi-strategic treatment. Curcumin-fusidic acid-loaded mixed micelles (Cur-FA-MMs) were assessed for size, surface charge, compatibility, in vitro release, and encapsulation. The selected formula was further loaded into nanogel and investigated for viscosity, ex vivo permeation, and in vivo potential. Cur-FA-MMs exhibited uniform nanosized spherical morphology, and negative surface charge affording high encapsulation for both drugs with a biphasic in vitro release over a period of 48h and good colloidal stability. The attained Cur-FA-MM-loaded nanogel had optimum viscosity with remarkable permeation coefficient values nearly 2-fold that related to plain nanogel. The pharmacodynamic effect of Cur on FA was pronounced by the significant improvement of the skin's degree of inflammation, epidermal hypertrophy, and congestion in animals treated with Cur-FA-MM-loaded nanogel. In conclusion, micellar nanogel could enable the progressive effect of Cur (an antioxidant with reported antibiotic activity) on FA (antibiotic) and decrease the risk of emerging antibiotic resistance by enhancing the solubility and permeation of Cur.
Collapse
Affiliation(s)
- Raghda Abdel-Monem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Eman S El-Leithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | | | - Rania S Abdel-Rashid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
10
|
Abdel-Bar HM, Tulbah AS, Darwish HW, Salama R, Naguib IA, Yassin HA, Abo El-Enin HA. Quetiapine Albumin Nanoparticles as an Efficacious Platform for Brain Deposition and Potentially Improved Antipsychotic Activity. Pharmaceutics 2023; 15:1785. [PMID: 37513972 PMCID: PMC10385742 DOI: 10.3390/pharmaceutics15071785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Quetiapine (QP) is a second-generation short-acting antipsychotic drug extensively metabolized in the liver, producing pharmacologically inactive metabolites and leading to diminished bioavailability. Therefore, this study aimed to develop an intravenous QP albumin nanoparticles (NPs) system for improving QP antipsychotic activity and brain targeting. QP-loaded albumin NPs were prepared by the desolvation method. The fabricated NPs were characterized in terms of particle size, zeta potential, entrapment efficiency (EE%), and in vitro drug release. In vivo pharmacokinetics and biodistribution in rats were studied. In addition, the antipsychotic activity of the optimized platform was also investigated. Human serum albumin (HSA) concentration, pH, and stirring time were modulated to optimize QP albumin NPs with a particle size of 103.54 ± 2.36 nm and a QP EE% of 96.32 ± 3.98%. In addition, the intravenous administration of QP albumin NPs facilitated QP brain targeting with a 4.9-fold increase in targeting efficiency compared to the oral QP solution. The QP albumin NPs improved the QP antipsychotic activity, indicated by suppressing rats' hypermobility and reducing the QP's extrapyramidal side effects. The obtained results proposed that intravenous QP- NPs could improve QP brain targeting and its antipsychotic efficiency.
Collapse
Affiliation(s)
- Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Alaa S Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rania Salama
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Heba A Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Hadel A Abo El-Enin
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR) (Previously), Egyptian Drug Authority (Currently), Giza 12511, Egypt
| |
Collapse
|
11
|
Abo El-Enin HA, Tulbah AS, Darwish HW, Salama R, Naguib IA, Yassin HA, Abdel-Bar HM. Evaluation of Brain Targeting and Antipsychotic Activity of Nasally Administrated Ziprasidone Lipid-Polymer Hybrid Nanocarriers. Pharmaceuticals (Basel) 2023; 16:886. [PMID: 37375832 DOI: 10.3390/ph16060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The feasibility of using lipid-polymer hybrid (LPH) nanocarriers as a potential platform for the intranasal delivery of ziprasidone (ZP), a second-generation antipsychotic, was explored. Different ZP-loaded LPH composed of a PLGA core and cholesterol-lecithin lipid coat were prepared using a single step nano-precipitation self-assembly technique. Modulation of polymer, lipid and drug amounts, as well as stirring-speed-optimized LPH with a particle size of 97.56 ± 4.55 nm and a ZP entrapment efficiency (EE%) of 97.98 ± 1.22%. The brain deposition and pharmacokinetics studies proved the efficiency of LPH to traverse the blood-brain barrier (BBB) following intranasal delivery with a 3.9-fold increase in targeting efficiency compared to the intravenous (IV) ZP solution with a direct nose-to-brain transport percentage (DTP) of 74.68%. The ZP-LPH showed enhanced antipsychotic activity in terms of animals' hypermobility over an IV drug solution in schizophrenic rats. The obtained results showed that the fabricated LPH was able to improve ZP brain uptake and proved its antipsychotic efficiency.
Collapse
Affiliation(s)
- Hadel A Abo El-Enin
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR) (Previously), Egyptian Drug Authority (Currently), Giza 12511, Egypt
| | - Alaa S Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rania Salama
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
- Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Heba A Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| |
Collapse
|