1
|
Zhang Q, Soulère L, Queneau Y. Amide bioisosteric replacement in the design and synthesis of quorum sensing modulators. Eur J Med Chem 2024; 273:116525. [PMID: 38801798 DOI: 10.1016/j.ejmech.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The prevention or control of bacterial infections requires continuous search for novel approaches among which bacterial quorum sensing inhibition is considered as a complementary antibacterial strategy. Quorum sensing, used by many different bacteria, functions through a cell-to-cell communication mechanism relying on chemical signals, referred to as autoinducers, such as N-acyl homoserine lactones (AHLs) which are the most common chemical signals in this system. Designing analogs of these autoinducers is one of the possible ways to interfere with quorum sensing. Since bioisosteres are powerful tools in medicinal chemistry, targeting analogs of AHLs or other signal molecules and mimics of known QS modulators built on amide bond bioisosteres is a relevant strategy in molecular design and synthetic routes. This review highlights the application of amide bond bioisosteric replacement in the design and synthesis of novel quorum sensing inhibitors.
Collapse
Affiliation(s)
- Qiang Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Hubei University of Education, 129 Second Gaoxin Road, Wuhan 430205, China
| | - Laurent Soulère
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| | - Yves Queneau
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France.
| |
Collapse
|
2
|
Boya BR, Lee JH, Lee J. Antimicrobial and antibiofilm activities of chromone derivatives against uropathogenic Escherichia coli. Microbiol Res 2024; 278:127537. [PMID: 37922697 DOI: 10.1016/j.micres.2023.127537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is a urinary tract pathogen responsible for most nosocomial urinary tract infections and can cause severe conditions like acute cystitis of the bladder or pyelonephritis. UPEC harbors a host of virulence factors like curli, hemolysin, siderophore, and motility factors and can form biofilm-like communities and quiescent reservoirs that aid its survival. This study was performed to investigate the antibiofilm, antimicrobial, and antivirulence potentials of three chromone derivatives, namely, 6-bromo 3-formylchromone, 6-chloro 3-formylchromone, and 3-formyl 6-isopropylchromone. These chromones had MICs against UPEC of 20, 20, and 50 µg/ml, respectively, inhibited biofilm formation by 72-96% at 20 µg/ml, and inhibited UPEC-associated virulence factors, that is, hemolysis, motility, curli, siderophore production, indole production, quiescent colony formation, and cell surface hydrophobicity. Gene expression analysis indicated these three derivatives downregulated virulence genes associated with toxins, biofilm production, and stress regulation and suggested they might target two-component UvrY response regulator. 3D-QSAR analysis showed that substitutions at the third and sixth positions of the chromone scaffold favor antimicrobial activity against UPEC. Furthermore, ADME profiles and C. elegans cytotoxicity assays indicated that these chromone derivatives are potent, safe drug candidates.
Collapse
Affiliation(s)
- Bharath Reddy Boya
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Trognon J, Rima M, Lajoie B, Roques C, El Garah F. NaCl-induced modulation of species distribution in a mixed P. aeruginosa / S. aureus / B.cepacia biofilm. Biofilm 2023; 6:100153. [PMID: 37711514 PMCID: PMC10497989 DOI: 10.1016/j.bioflm.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Pseudomonas aeruginosa, Staphylococcus aureus, and Burkholderia cepacia are notorious pathogens known for their ability to form resilient biofilms, particularly within the lung environment of cystic fibrosis (CF) patients. The heightened concentration of NaCl, prevalent in the airway liquid of CF patients' lungs, has been identified as a factor that promotes the growth of osmotolerant bacteria like S. aureus and dampens host antibacterial defenses, thereby fostering favorable conditions for infections. In this study, we aimed to investigate how increased NaCl concentrations impact the development of multi-species biofilms in vitro, using both laboratory strains and clinical isolates of P. aeruginosa, S. aureus, and B. cepacia co-cultures. Employing a low-nutrient culture medium that fosters biofilm growth of the selected species, we quantified biofilm formation through a combination of adherent CFU counts, qPCR analysis, and confocal microscopy observations. Our findings reaffirmed the challenges faced by S. aureus in establishing growth within 1:1 mixed biofilms with P. aeruginosa when cultivated in a minimal medium. Intriguingly, at an elevated NaCl concentration of 145 mM, a symbiotic relationship emerged between S. aureus and P. aeruginosa, enabling their co-existence. Notably, this hyperosmotic environment also exerted an influence on the interplay of these two bacteria with B. cepacia. We demonstrated that elevated NaCl concentrations play a pivotal role in orchestrating the distribution of these three species within the biofilm matrix. Furthermore, our study unveiled the beneficial impact of NaCl on the biofilm growth of clinically relevant mucoid P. aeruginosa strains, as well as two strains of methicillin-sensitive and methicillin-resistant S. aureus. This underscores the crucial role of the microenvironment during the colonization and infection processes. The results suggest that hyperosmotic conditions could hold the key to unlocking a deeper understanding of the genesis and behavior of CF multi-species biofilms.
Collapse
Affiliation(s)
- Jeanne Trognon
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maya Rima
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Barbora Lajoie
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie Hygiène, Toulouse, France
| | - Fatima El Garah
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
4
|
El Mahmoudi A, Tareau AS, Barreau M, Chevalier S, Hourma C, Demange L, Benhida R, Bougrin K. Green synthesis and anti-biofilm activities of 3,5-disubstituted isoxazoline/isoxazole-linked secondary sulfonamide derivatives on Pseudomonas aeruginosa. Bioorg Med Chem Lett 2023; 96:129517. [PMID: 37838341 DOI: 10.1016/j.bmcl.2023.129517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
The search for new classes of antibiotics is a real concern of public health due to the emergence of multi-resistant bacteria strains. We report herein the synthesis and characterization of a new series of 13 molecules combining isoxazoline/isoxazole sulfonamides and hydrazides motives. These molecules were obtained according to a costless eco-friendly procedure, and a one-pot three-step cascade synthesis under ultrasonic cavitation. All the synthesized compounds were fully characterized by HRMS, 1H NMR, 13C NMR spectroscopy and HPLC analysis. These new molecules have been evaluated against the major human opportunistic pathogen Pseudomonas aeruginosa to determine their potential to affect its growth and biofilm formation or dispersion. Two derivatives (5a and 6a) demonstrated their ability to destabilize a mature biofilm by about 50 % within 24 h. This may pave the way to the development of a new class of compounds affecting biofilm, which are easy to synthesize according to green chemistry processes.
Collapse
Affiliation(s)
- Ayoub El Mahmoudi
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Anne-Sophie Tareau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, F-76000 Rouen, France
| | - Magalie Barreau
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, F-76000 Rouen, France
| | - Sylvie Chevalier
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, F-76000 Rouen, France
| | - Chaimae Hourma
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Luc Demange
- Université Paris Cité, CiTCoM, UMR 8038 CNRS, Faculté de Pharmacie, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Rachid Benhida
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco; Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 28 Avenue Valrose, 06108 Nice, France.
| |
Collapse
|
5
|
Sabt A, Abdelraof M, Hamissa MF, Noamaan MA. Antibacterial Activity of Quinoline-Based Derivatives against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa: Design, Synthesis, DFT and Molecular Dynamic Simulations. Chem Biodivers 2023; 20:e202300804. [PMID: 37933986 DOI: 10.1002/cbdv.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023]
Abstract
Bacterial virulence becomes a significant challenge for clinical treatments, particularly those characterized as Multi-Drug-Resistant (MDR) strains. Therefore, the preparation of new compounds with active moieties could be a successful approach for eradication of MDR strains. For this purpose, newly synthesized quinoline compounds were prepared and tested for their antimicrobial activity against Methicillin-Resistant Staphylococcus Aureus (MRSA) and Pseudomonas Aeruginosa (PA). Among the synthesized derivatives, compounds 1-(quinolin-2-ylamino)pyrrolidine-2,5-dione (8) and 2-(2-((5-methylfuran-2-yl)methylene)hydrazinyl)quinoline (12) were shown to possess the highest antimicrobial activity with the minimum inhibitory concentration with the values of 5±2.2 and10±1.5 μg/mL towards Pseudomonas aeruginosa without any activity towards MRSA. Interestingly, compounds 2-(2-((1H-indol-3-yl)methylene)hydrazinyl)quinoline (13) and 2-(4-bromophenyl)-3-(quinolin-2-ylamino)thiazolidin-4-one (16c) showed significant inhibition activity against Staphylococcus aureus MRSA and Pseudomonas aeruginosa. Compound 13 (with indole moiety) particularly displayed excellent bactericidal activity with low MIC values 20±3.3 and 10±1.5 μg/mL against Staphylococcus aureus MRSA and Pseudomonas aeruginosa, respectively. Effects molecular modelling was used to determine the mode of action for the antimicrobial effect. The stability of complexes formed by docking and target-ligand pairing was evaluated using molecular dynamics simulations. The compounds were also tested for binding affinity to the target protein using MM-PBSA. Density-functional theory (DFT) calculations were also used to investigate the electrochemical properties of various compounds.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Center (NRC), 33 El Behouth St., Giza P.O., 12622, Egypt
| | - Mohamed Farouk Hamissa
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague, Czech Republic
| | - Mahmoud A Noamaan
- Mathematics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Milusheva M, Gledacheva V, Stefanova I, Feizi-Dehnayebi M, Mihaylova R, Nedialkov P, Cherneva E, Tumbarski Y, Tsoneva S, Todorova M, Nikolova S. Synthesis, Molecular Docking, and Biological Evaluation of Novel Anthranilic Acid Hybrid and Its Diamides as Antispasmodics. Int J Mol Sci 2023; 24:13855. [PMID: 37762158 PMCID: PMC10530836 DOI: 10.3390/ijms241813855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The present article focuses on the synthesis and biological evaluation of a novel anthranilic acid hybrid and its diamides as antispasmodics. Methods: Due to the predicted in silico methods spasmolytic activity, we synthesized a hybrid molecule of anthranilic acid and 2-(3-chlorophenyl)ethylamine. The obtained hybrid was then applied in acylation with different acyl chlorides. Using in silico analysis, pharmacodynamic profiles of the compounds were predicted. A thorough biological evaluation of the compounds was conducted assessing their in vitro antimicrobial, cytotoxic, anti-inflammatory activity, and ex vivo spasmolytic activity. Density functional theory (DFT) calculation, including geometry optimization, molecular electrostatic potential (MEP) surface, and HOMO-LUMO analysis for the synthesized compounds was conducted using the B3LYP/6-311G(d,p) method to explore the electronic behavior, reactive regions, and stability and chemical reactivity of the compounds. Furthermore, molecular docking simulation along with viscosity measurement indicated that the newly synthesized compounds interact with DNA via groove binding mode. The obtained results from all the experiments demonstrate that the hybrid molecule and its diamides inherit spasmolytic, antimicrobial, and anti-inflammatory capabilities, making them excellent candidates for future medications.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Rositsa Mihaylova
- Laboratory of Experimental Chemotherapy, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University, 1431 Sofia, Bulgaria
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Emiliya Cherneva
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Build. 9, 1113 Sofia, Bulgaria
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
7
|
In Silico, In Vitro, and Ex Vivo Biological Activity of Some Novel Mebeverine Precursors. Biomedicines 2023; 11:biomedicines11020605. [PMID: 36831141 PMCID: PMC9953468 DOI: 10.3390/biomedicines11020605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastroenterological disorder with complex pathogenesis and multifaceted therapy approaches, aimed at alleviating clinical symptoms and improving the life quality of patients. Its treatment includes dietary changes and drugs from various pharmacological groups such as antidiarrheals, anticholinergics, serotonin receptor antagonists, targeting chloride ion channels, etc. The present article is focused on the synthesis and biological evaluation of some mebeverine precursors as potential antispasmodics. METHODS In silico analysis aimed at predicting the pharmacodynamic profile of the compounds was performed. Based on these predictions, ex vivo bioelectrical activity (BEA) and immunohistochemical effects of the compounds were established. A thorough biological evaluation of the compounds was conducted assessing their in vitro antimicrobial and cytotoxic activity. RESULTS All the newly synthesized compounds exerted drug-like properties, whereby 3-methyl-1-phenylbutan-2-amine 3 showed a significant change in BEA due to Ca2+ channel regulation, Ca2+ influx modulation, and a subsequent change in smooth muscle cell response. The immunohistochemical studies showed a good correlation with the obtained data on the BEA, defining amine 3 as a leader structure. No cytotoxicity to human malignant leukemic cell lines (LAMA-84, K-562) was observed for all tested compounds. CONCLUSION Based on the experimental results, we outlined 3-methyl-1-phenylbutan-2-amine 3 as a potential effective choice for orally active long-term therapy of IBS.
Collapse
|
8
|
Bruneau A, Gillon E, Furiga A, Brachet E, Alami M, Roques C, Varrot A, Imberty A, Messaoudi S. Discovery of potent 1,1-diarylthiogalactoside glycomimetic inhibitors of Pseudomonas aeruginosa LecA with antibiofilm properties. Eur J Med Chem 2023; 247:115025. [PMID: 36549118 DOI: 10.1016/j.ejmech.2022.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In this work, β-thiogalactoside mimetics bearing 1,1-diarylmethylene or benzophenone aglycons have been prepared and assayed for their affinity towards LecA, a lectin and virulence factor from Pseudomonas aeruginosa involved in bacterial adhesion and biofilm formation. The hit compound presents higher efficiency than previously described monovalent inhibitors and the crystal structure confirmed the occurrence of additional contacts between the aglycone and the protein surface. The highest affinity (160 nM) was obtained for a divalent ligand containing two galactosides. The monovalent high affinity compound (Kd = 1 μM) obtained through structure-activity relationship (SAR) showed efficient antibiofilm activity with no associated bactericidal activity.
Collapse
Affiliation(s)
- Alexandre Bruneau
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Aurélie Furiga
- LCG, Laboratoire de Génie Chimique (UMR 5503), Département Bioprocédés et Systèmes Microbiens, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Etienne Brachet
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France
| | - Christine Roques
- LCG, Laboratoire de Génie Chimique (UMR 5503), Département Bioprocédés et Systèmes Microbiens, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Annabelle Varrot
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France.
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
9
|
The Molecular Architecture of Pseudomonas aeruginosa Quorum-Sensing Inhibitors. Mar Drugs 2022; 20:md20080488. [PMID: 36005489 PMCID: PMC9409833 DOI: 10.3390/md20080488] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
The survival selection pressure caused by antibiotic-mediated bactericidal and bacteriostatic activity is one of the important inducements for bacteria to develop drug resistance. Bacteria gain drug resistance through spontaneous mutation so as to achieve the goals of survival and reproduction. Quorum sensing (QS) is an intercellular communication system based on cell density that can regulate bacterial virulence and biofilm formation. The secretion of more than 30 virulence factors of P. aeruginosa is controlled by QS, and the formation and diffusion of biofilm is an important mechanism causing the multidrug resistance of P. aeruginosa, which is also closely related to the QS system. There are three main QS systems in P. aeruginosa: las system, rhl system, and pqs system. Quorum-sensing inhibitors (QSIs) can reduce the toxicity of bacteria without affecting the growth and enhance the sensitivity of bacterial biofilms to antibiotic treatment. These characteristics make QSIs a popular topic for research and development in the field of anti-infection. This paper reviews the research progress of the P. aeruginosa quorum-sensing system and QSIs, targeting three QS systems, which will provide help for the future research and development of novel quorum-sensing inhibitors.
Collapse
|