1
|
Barilo J, Bouzeineddine NZ, Philippi A, Basta S. Polarized macrophage functions are affected differentially after CSF-1R inhibition with PLX5622. Eur J Pharmacol 2024; 984:177059. [PMID: 39419432 DOI: 10.1016/j.ejphar.2024.177059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
PLX5622 is a colony stimulating factor 1 receptor (CSF-1R) inhibitor that is known to deplete microglial cells in vivo. Recently its effects on macrophages (Mφ) were also observed in vivo. Therefore, we performed this study to assess its in vitro effects on the differentiation and functions of polarized Mφ derived from different tissues. Our findings show that addition of PLX5622 early on after ex vivo isolation hinders Mφ differentiation and survival. However, its addition post Mφ differentiation did not significantly affect the viability. Furthermore, PLX5622 affects certain functions and degree of polarization of IL-4 (M2a) Mφ but not polarization of M1-like Mφ. Our study provides novel aspects on the application of PLX5622 to study Mφ functions in vitro, where polarization is affected by CSF-1R signalling and provides distinctive evidence to its ability to affect certain populations of Mφ during in vitro differentiation and maturation.
Collapse
Affiliation(s)
- Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alecco Philippi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
2
|
Ayoub R, Yang S, Ji H, Fan L, De Michino S, Mabbott DJ, Nieman BJ. Brain volume and microglial density changes are correlated in a juvenile mouse model of cranial radiation and CSF1R inhibitor treatment. NMR IN BIOMEDICINE 2024:e5222. [PMID: 39164196 DOI: 10.1002/nbm.5222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/22/2024]
Abstract
Microglia have been shown to proliferate and become activated following cranial radiotherapy (CRT), resulting in a chronic inflammatory response. We investigated the role of microglia in contributing to widespread volume losses observed in the brain following CRT in juvenile mice. To manipulate microglia, we used low-dose treatment with a highly selective CSF1R inhibitor called PLX5622 (PLX). We hypothesized that alteration of the post-CRT microglia population would lead to changes in brain development outcomes, as evaluated by structural MRI. Wild-type C57BL/6J mice were provided with daily intraperitoneal injections of PLX (25 mg/kg) or vehicle from postnatal day (P)14 to P19. Mice also received whole-brain irradiation (7 Gy) or sham irradiation (0 Gy) at 16 days of age. In one cohort of mice, immunohistochemical assessment in tissue sections was conducted to assess the impact of the selected PLX and CRT doses as well as their combination. In a separate cohort, mice were imaged using MRI at P14 (pretreatment), P19, P23, P42 and P63 in order to assess induced volume changes, which were measured based on structures from a predefined atlas. We observed that PLX and radiation treatments led to sex-specific changes in the microglial cell population. Across treatment groups, MRI-detected anatomical volumes at P19 and P63 were associated with microglia and proliferating microglia densities, respectively. Overall, our study demonstrates that low-dose PLX treatment produces a sex-dependent response in juvenile mice, that manipulation of microglia alters CRT-induced volume changes and that microglia density and MRI-derived volume changes are correlated in this model.
Collapse
Affiliation(s)
- Ramy Ayoub
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sabrina Yang
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Helen Ji
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lloyd Fan
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steven De Michino
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Li H, Watkins LR, Wang X. Microglia in neuroimmunopharmacology and drug addiction. Mol Psychiatry 2024; 29:1912-1924. [PMID: 38302560 DOI: 10.1038/s41380-024-02443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Drug addiction is a chronic and debilitating disease that is considered a global health problem. Various cell types in the brain are involved in the progression of drug addiction. Recently, the xenobiotic hypothesis has been proposed, which frames substances of abuse as exogenous molecules that are responded to by the immune system as foreign "invaders", thus triggering protective inflammatory responses. An emerging body of literature reveals that microglia, the primary resident immune cells in the brain, play an important role in the progression of addiction. Repeated cycles of drug administration cause a progressive, persistent induction of neuroinflammation by releasing microglial proinflammatory cytokines and their metabolic products. This contributes to drug addiction via modulation of neuronal function. In this review, we focus on the role of microglia in the etiology of drug addiction. Then, we discuss the dynamic states of microglia and the correlative and causal evidence linking microglia to drug addiction. Finally, possible mechanisms of how microglia sense drug-related stimuli and modulate the addiction state and how microglia-targeted anti-inflammation therapies affect addiction are reviewed. Understanding the role of microglia in drug addiction may help develop new treatment strategies to fight this devastating societal challenge.
Collapse
Affiliation(s)
- Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China.
| |
Collapse
|
4
|
Ekmekcioglu O, Albert NL, Heinrich K, Tolboom N, Van Weehaeghe D, Traub-Weidinger T, Atay LO, Garibotto V, Morbelli S. Neurological Disorders and Women's Health: Contribution of Molecular Neuroimaging Techniques. Semin Nucl Med 2024; 54:237-246. [PMID: 38365546 DOI: 10.1053/j.semnuclmed.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Sex differences in brain physiology and the mechanisms of drug action have been extensively reported. These biological variances, from structure to hormonal and genetic aspects, can profoundly influence healthy functioning and disease mechanisms and might have implications for treatment and drug development. Molecular neuroimaging techniques may help to disclose sex's impact on brain functioning, as well as the neuropathological changes underpinning several diseases. This narrative review summarizes recent lines of evidence based on PET and SPECT imaging, highlighting sex differences in normal conditions and various neurological disorders.
Collapse
Affiliation(s)
- Ozgul Ekmekcioglu
- Department of Nuclear Medicine, University of Health Sciences, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey.
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kathrin Heinrich
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Tatiana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, Faculty of Medicine, University of Geneva, CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Silvia Morbelli
- Nuclear Medicine Unit, AOU Città Della Salute e Della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
6
|
Weyer MP, Strehle J, Schäfer MKE, Tegeder I. Repurposing of pexidartinib for microglia depletion and renewal. Pharmacol Ther 2024; 253:108565. [PMID: 38052308 DOI: 10.1016/j.pharmthera.2023.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Pexidartinib (PLX3397) is a small molecule receptor tyrosine kinase inhibitor of colony stimulating factor 1 receptor (CSF1R) with moderate selectivity over other members of the platelet derived growth factor receptor family. It is approved for treatment of tenosynovial giant cell tumors (TGCT). CSF1R is highly expressed by microglia, which are macrophages of the central nervous system (CNS) that defend the CNS against injury and pathogens and contribute to synapse development and plasticity. Challenged by pathogens, apoptotic cells, debris, or inflammatory molecules they adopt a responsive state to propagate the inflammation and eventually return to a homeostatic state. The phenotypic switch may fail, and disease-associated microglia contribute to the pathophysiology in neurodegenerative or neuropsychiatric diseases or long-lasting detrimental brain inflammation after brain, spinal cord or nerve injury or ischemia/hemorrhage. Microglia also contribute to the growth permissive tumor microenvironment of glioblastoma (GBM). In rodents, continuous treatment for 1-2 weeks via pexidartinib food pellets leads to a depletion of microglia and subsequent repopulation from the remaining fraction, which is aided by peripheral monocytes that search empty niches for engraftment. The putative therapeutic benefit of such microglia depletion or forced renewal has been assessed in almost any rodent model of CNS disease or injury or GBM with heterogeneous outcomes, but a tendency of partial beneficial effects. So far, microglia monitoring e.g. via positron emission imaging is not standard of care for patients receiving Pexidartinib (e.g. for TGCT), so that the depletion and repopulation efficiency in humans is still largely unknown. Considering the virtuous functions of microglia, continuous depletion is likely no therapeutic option but short-lasting transient partial depletion to stimulate microglia renewal or replace microglia in genetic disease in combination with e.g. stem cell transplantation or as part of a multimodal concept in treatment of glioblastoma appears feasible. The present review provides an overview of the preclinical evidence pro and contra microglia depletion as a therapeutic approach.
Collapse
Affiliation(s)
- Marc-Philipp Weyer
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany
| | - Jenny Strehle
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Faculty of Medicine, Frankfurt, Germany.
| |
Collapse
|
7
|
Bobotis BC, Braniff O, Gargus M, Akinluyi ET, Awogbindin IO, Tremblay MÈ. Sex differences of microglia in the healthy brain from embryonic development to adulthood and across lifestyle influences. Brain Res Bull 2023; 202:110752. [PMID: 37652267 DOI: 10.1016/j.brainresbull.2023.110752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Microglia, the central nervous system innate immune cells, play a critical role in maintaining a homeostatic environment in the brain throughout life. These cells exhibit an impressive range of functions and characteristics that help to ensure proper functioning of the brain. Notably, microglia can present differences in their genetic and physical traits, which can be influenced by a range of factors, including age, environmental exposures, disease, and sex. Remarkably, microglia have been found to express receptors for sex hormones, suggesting that these hormones may play a role in modulating microglial behavior and potentially contribute to sex differences. Additionally, sex-chromosomal factors were shown to impact microglial genetics and functioning. In this review, we will examine how microglial responses in homeostasis are impacted by their interaction with sex hormones and sex chromosomes. Specifically, our investigation will focus on examining this interaction from embryonic development to adulthood, and the influence of lifestyle elements on various microglial features, including density and distribution, morphology, transcriptome, and proteome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Bhatia TN, Jamenis AS, Abbas M, Clark RN, Miner KM, Chandwani MN, Kim RE, Hilinski W, O'Donnell LA, Luk KC, Shi Y, Hu X, Chen J, Brodsky JL, Leak RK. A 14-day pulse of PLX5622 modifies α-synucleinopathy in preformed fibril-infused aged mice of both sexes. Neurobiol Dis 2023; 184:106196. [PMID: 37315905 PMCID: PMC10528721 DOI: 10.1016/j.nbd.2023.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.
Collapse
Affiliation(s)
- Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Manisha N Chandwani
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Roxanne E Kim
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Lauren A O'Donnell
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yejie Shi
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jun Chen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA; Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Dept. of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Sharon A, Jankowski MM, Shmoel N, Erez H, Spira ME. Significantly reduced inflammatory foreign-body-response to neuroimplants and improved recording performance in young compared to adult rats. Acta Biomater 2023; 158:292-307. [PMID: 36632879 DOI: 10.1016/j.actbio.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
The multicellular inflammatory encapsulation of implanted intracortical multielectrode arrays (MEA) is associated with severe deterioration of their field potentials' (FP) recording performance, which thus limits the use of brain implants in basic research and clinical applications. Therefore, extensive efforts have been made to identify the conditions in which the inflammatory foreign body response (FBR) is alleviated, or to develop methods to mitigate the formation of the inflammatory barrier. Here, for the first time, we show that (1) in young rats (74±8 gr, 4 weeks old at the onset of the experiments), cortical tissue recovery following MEA implantation proceeds with ameliorated inflammatory scar as compared to adult rats (242 ± 18 gr, 9 weeks old at the experimental onset); (2) in contrast to adult rats in which the Colony Stimulating factor 1 Receptor (CSF1R) antagonist chow eliminated ∼95% of the cortical microglia but not microglia adhering to the implant surfaces, in young rats the microglia adhering to the implant were eliminated along with the parenchymal microglia population. The removal of microglia adhering to the implant surfaces was correlated with improved recording performance by in-house fabricated Perforated Polyimide MEA Platforms (PPMP). These results support the hypothesis that microglia adhering to the surface of the electrodes, rather than the multicellular inflammatory scar, is the major underlying mechanism that deteriorates implant recording performance, and that young rats provide an advantageous model to study months-long, multisite electrophysiology in freely behaving rats. STATEMENT OF SIGNIFICANCE: Multisite electrophysiological recordings and stimulation devices play central roles in basic brain research and medical applications. The insertion of multielectrode-array platforms into the brain's parenchyma unavoidably injures the tissue, and initiates a multicellular inflammatory cascade culminating in the formation of an encapsulating scar tissue (the foreign body response-FBR). The dominant view, which directs most current research efforts to mitigate the FBR, holds that the FBR is the major hurdle to effective electrophysiological use of neuroprobes. By contrast, this report demonstrates that microglia adhering to the surface of a neuroimplants, rather than the multicellular FBR, underlie the performance deterioration of neuroimplants. These findings pave the way to the development of novel and focused strategies to overcome the functional deterioration of neuroimplants.
Collapse
Affiliation(s)
- Aviv Sharon
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maciej M Jankowski
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel; Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nava Shmoel
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Erez
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Micha E Spira
- Department of Neurobiology, the Alexander Silberman Institute of Life Science, the Hebrew University of Jerusalem, Jerusalem, Israel; The Charles E. Smith Family and Prof. Joel Elkes Laboratory for Collaborative Research in Psychobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Picard K, Corsi G, Decoeur F, Di Castro MA, Bordeleau M, Persillet M, Layé S, Limatola C, Tremblay MÈ, Nadjar A. Microglial homeostasis disruption modulates non-rapid eye movement sleep duration and neuronal activity in adult female mice. Brain Behav Immun 2023; 107:153-164. [PMID: 36202169 DOI: 10.1016/j.bbi.2022.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Sleep is a natural physiological state, tightly regulated through several neuroanatomical and neurochemical systems, which is essential to maintain physical and mental health. Recent studies revealed that the functions of microglia, the resident immune cells of the brain, differ along the sleep-wake cycle. Inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mainly produced by microglia in the brain, are also well-known to promote sleep. However, the contributing role of microglia on sleep regulation remains largely elusive, even more so in females. Given the higher prevalence of various sleep disorders in women, we aimed to determine the role of microglia in regulating the sleep-wake cycle specifically in female mice. Microglia were depleted in adult female mice with inhibitors of the colony-stimulating factor 1 receptor (CSF1R) (PLX3397 or PLX5622), which is required for microglial population maintenance. This led to a 65-73% reduction of the microglial population, as confirmed by immunofluorescence staining against IBA1 (marker of microglia/macrophages) and TMEM119 (microglia-specific marker) in the reticular nucleus of the thalamus and primary motor cortex. The spontaneous sleep-wake cycle was evaluated at steady-state, during microglial homeostasis disruption and after complete microglial repopulation, upon cessation of treatment with the inhibitors of CSF1R, using electroencephalography (EEG) and electromyography (EMG). We found that microglia-depleted female mice spent more time in non-rapid eye movement (NREM) sleep and had an increased number of NREM sleep episodes, which was partially restored after microglial total repopulation. To determine whether microglia could regulate sleep locally by modulating synaptic transmission, we used patch clamp to record spontaneous activity of pyramidal neurons in the primary motor cortex, which showed an increase of excitatory synaptic transmission during the dark phase. These changes in neuronal activity were modulated by microglial depletion in a phase-dependent manner. Altogether, our results indicate that microglia are involved in the sleep regulation of female mice, further strengthening their potential implication in the development and/or progression of sleep disorders. Furthermore, our findings indicate that microglial repopulation can contribute to normalizing sleep alterations caused by their partial depletion.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Giorgio Corsi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Fanny Decoeur
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marine Persillet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Department of Neurophysiology, Neuropharmacology, Inflammaging, IRCCS Neuromed, Pozzilli, Italy
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de médecine moléculaire, Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| | - Agnès Nadjar
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, F-33000 Bordeaux, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
11
|
Ball JB, Green-Fulgham SM, Watkins LR. Mechanisms of Microglia-Mediated Synapse Turnover and Synaptogenesis. Prog Neurobiol 2022; 218:102336. [DOI: 10.1016/j.pneurobio.2022.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
|