1
|
Karim S, Alkreathy H, Khan MI. Untargeted metabolic profiling of high-dose methotrexate toxicity shows alteration in betaine metabolism. Drug Chem Toxicol 2025; 48:294-302. [PMID: 38938090 DOI: 10.1080/01480545.2024.2369587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Cardiotoxicity is a well-established adverse effect of several drugs across multiple therapeutic indications. It is particularly prevalent following anticancer therapy. In order to evaluate the changes in cellular metabolism associated with methotrexate cardiotoxicity, we treated Wistar rats with a single high dose of methotrexate (HDMTX), and after five days, the animals were sacrificed. We then analyzed the cardiotoxicity parameters in serum like Cardiac enzymes(CK-MB, Troponin T, ALP), Inflammatory markers (TNF-α and IL-6), oxidative stress markers (NO, NOX-2), histopathology and cardiac tissue with the goal of identifying a metabolic signature of cardiotoxicity using discovery-based metabolomics. The biochemical parameters for cardiac enzymes, oxidative stress and inflammatory markers showed a significant increase in all three categories in rats treated with HDMTX. These findings were mirrored in the histopathological analysis confirming cardiotoxicity due to HDMTX. The results showed a total of 95 metabolites that were found to be significantly (p < 0.05) modulated: either up- or downregulated in the HDMTX-treated group when compared with the control group. Using integrated pathway analysis we found these metabolites were associated with many important cardiac tissue metabolic pathways, such as the malate aspartate shuttle, taurine and hypotaurine metabolism, betaine metabolism, spermidine biosynthesis, and homocysteine degradation. Among them, L-arginine, homocysteine, and betaine were significantly upregulated, suggesting their possible association with cardiac tissue injury. Overall, we provided evidence for using untargeted metabolomics to identify novel metabolites associated with HDMTX cardiac toxicity.
Collapse
Affiliation(s)
- Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Mersal EA, Morsi AA, Alkahtani J, Alhalal R, Alessa S, Shehab A, Sakr EM, Sabir DK, Dawood AF, Abdelmoneim AM. Pirfenidone targeted mechanisms for alleviating methotrexate-induced testiculopathy in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2003-2014. [PMID: 39222241 DOI: 10.1007/s00210-024-03407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Testicular injury and affected spermatogenesis are major complications of methotrexate (MTX) use. Oxidative stress is one contributing process leading to inflammation and apoptosis induction. Pirfenidone (PFD) is a well-known anti-fibrotic drug prescribed for interstitial lung fibrosis, in addition to anti-inflammatory, antioxidative, and antiapoptotic capabilities. The study aimed to explore the potential protection afforded by PFD in a rat model of MTX-induced testiculopathy. The experimental design included four groups, each containing seven adult Wistar rats: control, PFD (500 mg/kg/day, orally)-, MTX (0.5 mg/kg, intraperitoneal, twice weekly)-, and PFD/MTX-treated groups. Treatment continued for 4 weeks. Blood and testicular samples were harvested for biochemical, histological, immunohistochemical, and polymerase chain reaction (PCR) analyses. Also, the testicular damage and spermatogenic activity were graded by the testicular injury and Johnsen scoring system, respectively. PFD positively affected the serum testosterone (TST) level, reduced the testicular inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β)], reduced the testicular oxidative burden, increased superoxide dismutase (SOD), and protected the testicular histological structure. In addition, antifibrotic effects, anti-caspase-3, and PCNA enhancement activity were recorded. PFD exhibited a protective potential and mitigated the MTX-induced testiculopathy via suppression of testicular oxidative stress, inflammation, fibrosis, and apoptosis and retaining the testicular proliferative efficacy as confirmed by histological, immunohistochemical, and biochemical methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed M Abdelmoneim
- Department of Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
3
|
Mahmoud MM, El-Batran SA, Hegazy R, El-Sayed WM. Taurine and enzymatically modified isoquercitrin protected against methotrexate-induced deteriorations in the conductivity and rhythmicity of the heart in rats: Antioxidant, anti-inflammatory, and histological architecture approach. J Appl Toxicol 2024; 44:1924-1935. [PMID: 39135265 DOI: 10.1002/jat.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 10/06/2024]
Abstract
Cardiotoxicity is one of the most devastating complications of cancer treatment by methotrexate (MTX). The present study aimed to investigate the potential anti-cardiotoxic efficacy of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ) alone or combined against MTX-induced cardiotoxicity in adult male rats. A total of 36 rats were randomly divided into six groups (six animals each): control, MTX (a single i.p. dose of 20 mg/kg), EMIQ + MTX (26 mg/kg of EMIQ, p.o. for 16 days), Tau + MTX (500 mg/kg of Tau, p.o. for 16 days), EMIQ + Tau + MTX at the same previous doses, and (EMIQ + Tau)½ + MTX. MTX reduced the percentage of body weight change, the expression of dihydrofolate reductase (DHFR) and folypolyglutamyl synthetase (FPGS), the cleaved tumor necrosis factor alpha (TNF-α) level in the cardiac tissue, and the elevated serum TNF-α level. MTX extensively deteriorated the electrocardiography (ECG), inducing tachycardia with shortening of the time intervals between successive heartbeats (R-R interval), associated with elongation of ventricular depolarization (QRS interval), and the corrected total time for ventricular de- and repolarization (QTc) duration. Treatment with MTX resulted in a significant reduction in atrial depolarization (P amplitude) and rapid repolarization (T amplitude) and a significant elevation in plateau phase (ST height). MTX treatment resulted in swelling of cardiomyocytes with extensive vacuolization of sarcoplasm with numerous variably sized vacuoles in addition to apoptotic cells. Tau and EMIQ protected against MTX-induced deteriorations in the conductivity and rhythmicity of the heart through antioxidative, anti-inflammatory, and antiapoptotic activities. Treatment with tau and EMIQ combined at high or low doses offered superior protection to the heart than using each agent alone.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Seham A El-Batran
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Mahmoud MM, Hegazy R, El-Sayed WM. Taurine and enzymatically modified isoquercitrin synergistically protect against the methotrexate-induced cardiotoxicity in rats: antioxidant and antiapoptotic effects. Drug Chem Toxicol 2024:1-10. [PMID: 39505701 DOI: 10.1080/01480545.2024.2424282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
This study aimed to evaluate the protective potential of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ), both individually and in combination, against MTX-induced cardiotoxicity in male rats. A total of 36 rats were randomly divided into six groups (six animals each): control (vehicle), MTX alone (20 mg/kg, single dose), EMIQ+MTX (EMIQ at 26 mg/kg, p.o. for 16 days, with a single dose of MTX on the 13th day), Tau + MTX (Tau at 500 mg/kg, p.o. for 16 days, with a single dose of MTX on the 13th day), (EMIQ+Tau)+MTX, and (EMIQ+Tau)½+MTX. MTX treatment resulted in elevated levels of cardiac creatine phosphokinase-myocardial band, troponin I, nitric oxide, malondialdehyde, and serum IL-6, while decreasing levels of cardiac myeloperoxidase, catalase, and superoxide dismutase. MTX also reduced expression of BMI-1, induced DNA laddering and fragmentation, and increased cleaved caspase-3 protein expression in cardiac tissue. Both Tau and EMIQ showed equivalent effectiveness in protecting the heart against MTX-induced damage due to their antioxidant, anti-inflammatory, and antiapoptotic properties. Notably, combined treatment with half-doses of Tau and EMIQ offered superior protection compared to full doses of each agent alone. The full-dose combination showed similar efficacy to the half-dose combination, with a few exceptions. Overall, these results suggest a synergistic effect of Tau and EMIQ in mitigating MTX-induced cardiotoxicity, warranting further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rehab Hegazy
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
5
|
Behdokht B, Foad NM, Saeed N, Ahmadi N, Sakineh A. Comparative Study of the Protective Effects of Citral, Thymoquinone, and Silymarin on Methotrexate-induced Cardiotoxicity in Rats. J Pharmacopuncture 2024; 27:245-252. [PMID: 39350925 PMCID: PMC11439521 DOI: 10.3831/kpi.2024.27.3.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 06/05/2024] [Indexed: 10/04/2024] Open
Abstract
Objectives Methotrexate (MTX), an immunosuppressant and anti-cancer medication, can harm the heart. The goal of the current investigation was to assess the cardiotoxicity caused by MTX and the potential cardioprotective properties of silymarin, citral, and thymoquinone as antioxidants. Methods Forty-eight rats were divided into six groups, which included control, MTX, cosolvent, citral, thymoquinone, and silymarin groups. At the end of the study, the rats were anesthetized (ketamine and xylazine) and killed using CO2. Their blood samples were collected to measure the enzymatic activities of creatine kinase-myoglobin binding (CK-MB), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Also, the heart tissue was sampled to determine the antioxidant capacity and examine the histopathology. Results The findings revealed that the activity of CPK, CK-MB, and LDH enzymes significantly reduced in the thymoquinone treatment group compared to the MTX group (p < 0.05). On the other hand, total antioxidant capacity was significantly increased in the thymoquinone group compared to the MTX group (p < 0.05). The pathological modifications (i.e. severe congestion, edema fluid, the presence of inflammatory cells around the blood vessels, mild to moderate hemorrhaging between cardiac muscle fibers) were seen in the MTX group. The treatment groups, particularly thymoquinone, did not experience any appreciable pathological changes. Conclusion The thymoquinone was found to have the strongest protective effect against the heart damage caused by MTX.
Collapse
Affiliation(s)
- Barzan Behdokht
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Nazifi Saeed
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amani Sakineh
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Lim JO, Kim WI, Pak SW, Lee SJ, Moon C, Shin IS, Kim SH, Kim JC. Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Antioxidants (Basel) 2024; 13:972. [PMID: 39199218 PMCID: PMC11351339 DOI: 10.3390/antiox13080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are used in products that are applied to the human body, such as cosmetics and food, but their biocompatibility remains controversial. Pycnogenol (PYC), a natural extract of pine bark, exerts anti-inflammatory and antioxidant effects. In this study, we investigated whether PYC effectively alleviates pulmonary toxicity induced by airway exposure to TiO2NPs, and the beneficial effects of PYC were explained through the analysis of changes to the mechanism of cytotoxicity. TiO2NPs induced pulmonary inflammation and mucus production, increased the levels of malondialdehyde, and upregulated thioredoxin-interacting protein (TXNIP) and cleaved-caspase 3 (Cas3) in the lungs of mice. However, PYC treatment reduced the levels of all toxicity markers of TiO2NPs and restored glutathione levels. These antioxidant and anti-inflammatory effects of PYC were also demonstrated in TiO2NP-exposed human airway epithelial cells by increasing the mRNA levels of antioxidant enzymes and decreasing the expression of TXNIP, cleaved-Cas3, and inflammatory mediators. Taken together, our results showed that PYC attenuated TiO2NP-induced lung injury via TXNIP downregulation. Therefore, our results suggest the potential of PYC as an effective anti-inflammatory and antioxidant agent against TiO2NP-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| |
Collapse
|
7
|
Alwaili MA, Elhoby AH, El-Sayed NM, Mahmoud IZ, Alharthi A, El-Nablaway M, Khodeer DM. Cardioprotective Effects of α-Asarone Against Hexavalent Chromium-Induced Oxidative Damage in Mice. Drug Des Devel Ther 2024; 18:3383-3397. [PMID: 39100222 PMCID: PMC11297565 DOI: 10.2147/dddt.s464334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction This comprehensive study investigated the therapeutic potential of α-asarone in mitigating myocardial oxidative damage, primarily induced by hexavalent chromium (Cr(VI)) exposure in mice. Methods In this experiment, 24 mice were divided into four groups to assess the cardioprotective role of α-asarone. The study focused on two treatment groups, receiving 25 mg and 50 mg of α-asarone, respectively. These groups were compared against a control group subjected to Cr(VI) without α-asarone treatment, and a normal control negative group. The key biochemical parameters evaluated included serum levels of Creatine Kinase-MB (CK-MB) and Troponin I, markers indicative of myocardial damage. Additionally, the levels of Malondialdehyde (MDA) were measured to assess lipid peroxidation, alongside the evaluation of key inflammatory biomarkers in cardiac tissue homogenates, such as Tumor Necrosis Factor-α (TNF-α) and Interleukin-1β (IL-1β). Results Remarkably, α-asarone treatment resulted in a significant reduction in these markers compared to the control group. The treatment also elevated the activity of cardinal antioxidant enzymes like catalase (CAT) and superoxide dismutase (SOD), and reduced the glutathione (GSH). Furthermore, a notable upregulation of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) in cardiac tissue homogenates was observed, highlighting a potential pathway through which α-asarone exerts its protective effects. Histopathological analysis of cardiac tissues revealed that α-asarone ameliorated the structural lesions induced by Cr(VI). The study thus provides substantial evidence that α-asarone ameliorates Cr(VI)-induced cardiotoxicity through a multifaceted approach. It enhances cardiac enzyme function, modulates free radical generation, improves antioxidant status, and mitigates histopathological damage in cardiac tissues. Given these findings, α-asarone emerges as a promising agent against Cr(VI)-induced myocardial injury. Purpose This study paves the way for further research into the cardioprotective properties of α-asarone and its potential application in clinical settings by specifically exploring the protective efficacy of α-asarone against Cr(VI)-induced cardiotoxicity and delineating the underlying biochemical and molecular mechanisms involved.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdallah H Elhoby
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Islam Z Mahmoud
- Department of Cardiovascular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, 13713, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Dina M Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Al-Zharani M. Growth inhibitory effect of Leptospermum scoparium (manuka) chloroform extract on breast and liver cancer cell lines. J Adv Vet Anim Res 2024; 11:237-246. [PMID: 39101096 PMCID: PMC11296193 DOI: 10.5455/javar.2024.k769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 08/06/2024] Open
Abstract
Objective Research has demonstrated that Leptospermum scoparium possesses various therapeutic benefits. This study set out to determine whether or not L. scoparium extracts had any effect on the ability of HepG2 and MCF-7 breast cancer cells to survive. Materials and Methods The antiproliferative activity of L. scoparium extracts was explored using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. The most active fraction was selected to investigate its effects on apoptosis induction using flow cytometry and quantitative real-time polymerase chain reaction. The constituents of this fraction were characterized using GC-MS analysis. Results Research demonstrated that the chloroform fraction of L. scoparium (LSCF) significantly impacted the HepG2 and MCF-7 cancer cell lines. Treatment with LSCF led to a notable rise in both early and late apoptotic cells. Furthermore, there was an upregulation in the mRNA levels of P53, Bax, and caspases, while the expression of Bcl-2 mRNA saw a decrease. The analysis of LSCF revealed the primary components to be cis-calamenene, beta-eudesmol, cyclododecane, and alpha-muurolene. Conclusion The study showed the promising antiproliferative activity of L. scoparium, suggesting its potential application for cancer treatment.
Collapse
Affiliation(s)
- Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Zhao LL, Jayeoye TJ, Ashaolu TJ, Olatunji OJ. Pinostrobin, a dietary bioflavonoid exerts antioxidant, anti-inflammatory, and anti-apoptotic protective effects against methotrexate-induced ovarian toxicity in rats. Tissue Cell 2023; 85:102254. [PMID: 37866152 DOI: 10.1016/j.tice.2023.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
This study investigated the protective activities of pinostrobin (PIN) against methotrexate (MTX)-induced ovarian toxicity. Female rats were administered with PIN (50 mg/kg) for 4 weeks, while MTX was administered from weeks 2-4 of PIN treatment. Serum hormonal profiles, ovarian oxidative stress, inflammatory and apoptotic biomarkers as well as ovarian histomorphometry were evaluated. MTX administration elicited profound deficit in serum progesterone and estrogen (E2) levels, while luteinizing hormone (LH) and follicle stimulating hormone (FSH) were significantly increased. Additionally, MTX administration was associated with significant increases in ovarian malondialdehyde, nitric oxide, NF-кB, TNF-α, IL-6, IL-1β, iNOS and caspase-3 activity, as well as notable reduction in the activities of glutathione peroxidase, catalase and superoxide dismutase as well as the level of glutathione. Whereas, treatment with PIN significantly decreased serum levels of FSH and LH, as well as ovarian levels of NO, MDA, caspase 3, NF-κB, IL-1β, IL-6, TNF-α and iNOS. PIN also significantly upregulated GSH, GPx, CAT and SOD in the ovarian tissues as well as increased serum E2 and progesterone levels compared to the MTX group. Furthermore, PIN significantly restored altered ovarian histoarchitecture in the treated group. These findings suggests that PIN exerts protective effects against MTX-triggered ovarian damages.
Collapse
Affiliation(s)
- Ling-Ling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
10
|
Aboubakr M, Farag A, Elfadadny A, Alkafafy M, Soliman A, Elbadawy M. Antioxidant and anti-apoptotic potency of allicin and lycopene against methotrexate-induced cardiac injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88724-88733. [PMID: 37440131 DOI: 10.1007/s11356-023-28686-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
This study aimed to explore whether allicin (ALC) and lycopene (LP) could offer protection against the harmful effects of methotrexate (MTX), a type of chemotherapy drug known for its severe side effects, on the heart of rats. In this experiment, seven groups of rats (n = 7) were used. The first group was given saline as a control vehicle, the second group was given ALC at a dosage of 20 mg/kg orally, the third group was given LP at a dosage of 10 mg/kg orally, and the fourth group was given MTX at a dosage of 20 mg/kg intraperitoneally on the 15th day of the experiment. The remaining three groups received treatments, including ALC + MTX, LP + MTX, and ALC + LP + MTX. After the administration of MTX, the concentrations of serum cardiac biomarkers, such as Creatine kinase (CK), Lactate dehydrogenase (LDH), and creatine kinase-myoglobin binding (CK-MB) were found to increase. Also, MTX caused a notable rise in malondialdehyde (MDA) levels and significant declines in the levels of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) in the heart tissues of rats. In addition, MTX caused alterations in the cardiac histopathology and enhanced the caspase-3 expression in the cardiac tissues, indicating the occurrence of apoptosis. The antioxidant properties of ALC and/or LP were effectively reduced cardiac toxicity and apoptosis induced by MTX. The administration of ALC and/or LP was found to alleviate these effects caused by MTX.
Collapse
Affiliation(s)
- Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt.
| | - Ahmed Farag
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahmed Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, Toukh, Qaliobiya, Egypt
| |
Collapse
|
11
|
Ibrahim D, Abozied N, Abdel Maboud S, Alzamami A, Alturki NA, Jaremko M, Alanazi MK, Alhuthali HM, Seddek A. Therapeutic potential of bone marrow mesenchymal stem cells in cyclophosphamide-induced infertility. Front Pharmacol 2023; 14:1122175. [PMID: 37033609 PMCID: PMC10073512 DOI: 10.3389/fphar.2023.1122175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a deadly disease characterized by abnormal cell proliferation. Chemotherapy is one technique of cancer treatment. Cyclophosphamide (CYP) is the most powerful chemotherapy medication, yet it has serious adverse effects. It is an antimitotic medicine that regulates cell proliferation and primarily targets quickly dividing cells, and it has been related to varying levels of infertility in humans. In the current study, we assessed the biochemical, histological, and microscopic evaluations of testicular damage following cyclophosphamide administration. Further, we have explored the potential protective impact of mesenchymal stem cell (MSCs) transplantation. The biochemical results revealed that administration of cyclophosphamide increased serum concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), while it decreased serum concentrations of free testosterone hormone (TH), testicular follicle-stimulating hormone, luteinizing hormone, and free testosterone hormone concentrations, testicular total antioxidant capacity (TAC), and testicular activity of superoxide dismutase (SOD) enzyme. The histology and sperm examinations revealed that cyclophosphamide induced destruction to the architectures of several tissues in the testes, which drastically reduced the Johnsen score as well as the spermatogenesis process. Surprisingly, transplantation of mesenchymal stem cell after cyclophosphamide administration altered the deterioration effect of cyclophosphamide injury on the testicular tissues, as demonstrated by biochemical and histological analysis. Our results indicated alleviation of serum and testicular sex hormones, as well as testicular oxidative stress markers (total antioxidant capacity and superoxide dismutase activity), and nearly restored the normal appearance of the testicular tissues, Johnsen score, and spermatogenesis process. In conclusion, our work emphasizes the protective pharmacological use of mesenchymal stem cell to mitigate the effects of cyclophosphamide on testicular tissues that impair the spermatogenesis process following chemotherapy. These findings indicate that transferring mesenchymal stem cell to chemotherapy patients could significantly improve spermatogenesis.
Collapse
Affiliation(s)
- Dalia Ibrahim
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- *Correspondence: Dalia Ibrahim,
| | - Nadia Abozied
- The Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Samar Abdel Maboud
- The Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah, Saudi Arabia
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maram Khalil Alanazi
- Pharm.D, Scientific Office and Regulatory Affair Department, Dallah Pharma Company, Riyadh, Saudi Arabia
| | - Hayaa M. Alhuthali
- Department of Clinical laboratory sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asmaa Seddek
- The Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
12
|
AbdelKader G, Abdelaziz EZ, Hassan R, Greish SM, Abogresha NM, Sultan BO, Yousef EM, Morsi S. Protective Effects of Crocin Against Methotrexate-Induced Hepatotoxicity in Adult Male Albino Rats: Histological, Immunohistochemical, and Biochemical Study. Cureus 2023; 15:e34468. [PMID: 36874671 PMCID: PMC9981239 DOI: 10.7759/cureus.34468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Among the many known adverse effects of methotrexate (MTX), hepatotoxicity stands out as a major drawback that limits its therapeutic applicability. There is growing evidence that crocin has antioxidant, anti-hyperglycemic, cardioprotective, and anti-inflammatory effects. This study's aim is to evaluate the potential protective effect of crocin against MTX-induced liver damage in rats using biochemical, histological, and immunohistochemical analyses. METHODS Twenty-four adult male albino rats were split into four groups at random (six rats/group) as follows: normal control (saline, intraperitoneal (i.p.) injections), crocin-treated (100 mg/kg daily for 14 days, i.p.), MTX-treated (20 mg/kg single i.p. injection on day 15), and crocin/MTX-treated groups (crocin 100 mg/kg/day for 14 days, i.p. + MTX 20 mg/kg single i.p. injection on day 15). On day 16 of the experiment, blood and tissue specimens were used to assess the liver functions, oxidative stress markers, transforming growth factor beta 1 (TGF-β1), caspase-3, BCL-2-associated X protein (BAX), and B-cell lymphoma 2 (BCL-2) expression. RESULTS The results of the current research revealed the protective actions of crocin against MTX-induced hepatotoxicity. Our results showed that crocin possesses antioxidants (decrease malondialdehyde (MDA), increase glutathione (GSH) levels, and enhance catalase (CAT) and superoxide dismutase (SOD) enzymatic activity), anti-fibrotic (decrease TGF-β1), and anti-apoptotic (decrease BAX and caspase-3 expression while increase BCL-2) actions in liver. Moreover, crocin administration along with MTX restores the normal histological structure of hepatic tissues. CONCLUSION The data presented in the current study using an in vivo animal model support the notion that crocin should be further studied in humans to assess its potential hepatoprotective effects against MTX-induced liver damage.
Collapse
Affiliation(s)
- Ghada AbdelKader
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, EGY
| | - Eman Z Abdelaziz
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, EGY
| | - Ranya Hassan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, EGY
| | - Sahar M Greish
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, EGY.,Department of Physiology, School of Medicine, Badr University in Cairo (BUC), Cairo, EGY
| | - Noha M Abogresha
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, EGY
| | - Basma O Sultan
- Department of Internal Medicine, Faculty of Medicine, Suez Canal University, Ismailia, EGY
| | - Einas M Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin El Kom, EGY
| | - Shereen Morsi
- Department of Medical Physiology, Faculty of Medicine, Suez Canal University, Ismailia, EGY
| |
Collapse
|
13
|
El-Agawy MSED, Badawy AMM, Rabei MR, Elshaer MMA, El Nashar EM, Alghamdi MA, Alshehri MA, Elsayed HRH. Methotrexate-Induced Alteration of Renal Aquaporins 1 and 2, Oxidative Stress and Tubular Apoptosis Can Be Attenuated by Omega-3 Fatty Acids Supplementation. Int J Mol Sci 2022; 23:12794. [PMID: 36361584 PMCID: PMC9653681 DOI: 10.3390/ijms232112794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 09/10/2023] Open
Abstract
Methotrexate (MTX) is a potent anti-cancer drug, commonly associated with nephrotoxicity via the induction of oxidative stress and apoptosis with alteration of renal water channel proteins, namely aquaporins (AQPs). Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) have shown cytoprotective effects through their anti-oxidant and antiapoptotic activities. The present study aims for the first time to explore the role of LC-PUFA against MTX-induced nephrotoxicity. Rats were divided into the following groups: saline control, LC-PUFA control, MTX, MTX + LC-PUFA (150 mg/kg), or MTX + LC-PUFA (300 mg/kg). Then, H&E staining and immunohistochemical staining for the anti-apoptosis marker B-cell lymphoma 2 (BCL-2), the apoptosis marker BCL2-Associated X Protein (BAX), the proinflammatory marker Nuclear factor kappa B (NF-kB), AQPs 1 and 2 were performed in kidney sections with an assessment of renal oxidative stress. The MTX caused a renal histopathological alteration, upregulated renal BAX and NF-kB, downregulated Bcl-2 and AQP1, altered the distribution of AQP2, and caused oxidative stress. The LC-PUFA attenuated the pathological changes and decreased renal BAX and NF-kB, increased BCL-2 and AQP1, restored the normal distribution of AQP2, and decreased the oxidative stress. Therefore, LC-PUFA is a good adjuvant to MTX to prevent its adverse effects on kidneys through its antiapoptotic, antioxidant, and anti-inflammatory effect and its role in the restoration of the expression of AQPs 1 and 2.
Collapse
Affiliation(s)
- Mosaab Salah El-din El-Agawy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Medicine, New Mansoura University, New Mansoura 35712, Egypt
| | | | - Mohammed R. Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Physiology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Mohamed Mahmoud Abdelraheem Elshaer
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, King Salman International University, South Sinai 46511, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed A. Alshehri
- Nephrology Section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Medicine, New Mansoura University, New Mansoura 35712, Egypt
| |
Collapse
|
14
|
Alshawwa SZ, Alshallash KS, Ghareeb A, Elazzazy AM, Sharaf M, Alharthi A, Abdelgawad FE, El-Hossary D, Jaremko M, Emwas AH, Helmy YA. Assessment of Pharmacological Potential of Novel Exopolysaccharide Isolated from Marine Kocuria sp. Strain AG5: Broad-Spectrum Biological Investigations. Life (Basel) 2022; 12:life12091387. [PMID: 36143424 PMCID: PMC9504734 DOI: 10.3390/life12091387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
With more than 17 clinically approved Drugs and over 20 prodrugs under clinical investigations, marine bacteria are believed to have a potential supply of innovative therapeutic bioactive compounds. In the current study, Kocuria sp. strain AG5 isolated from the Red Sea was identified and characterized by biochemical and physiological analysis, and examination of a phylogenetic 16S rRNA sequences. Innovative exopolysaccharide (EPS) was separated from the AG5 isolate as a major fraction of EPS (EPSR5, 6.84 g/L−1). The analysis of EPSR5 revealed that EPSR5 has a molecular weight (Mw) of 4.9 × 104 g/mol and number average molecular weight (Mn) of 5.4 × 104 g/mol and contains sulfate (25.6%) and uronic acid (21.77%). Analysis of the monosaccharide composition indicated that the EPSR5 fraction composes of glucose, galacturonic acid, arabinose, and xylose in a molar ratio of 2.0:0.5:0.25:1.0, respectively. Assessment of the pharmacological potency of EPSR5 was explored by examining its cytotoxicity, anti-inflammatory, antioxidant, and anti-acetylcholine esterase influences. The antioxidant effect of EPSR5 was dose- and time-dependently increased and the maximum antioxidant activity (98%) was observed at 2000 µg/mL after 120 min. Further, EPSR5 displayed a significant repressive effect regarding the proliferation of HepG-2, A-549, HCT-116, MCF7, HEP2, and PC3 cells with IC50 453.46 ± 21.8 µg/mL, 873.74 ± 15.4 µg/mL, 788.2 ± 32.6 µg/mL, 1691 ± 44.2 µg/mL, 913.1 ± 38.8 µg/mL, and 876.4 ± 39.8 µg/mL, respectively. Evaluation of the inhibitory activity of the anti-inflammatory activity of EPSR5 indicated that EPSR5 has a significant inhibitory activity toward lipoxygenase (5-LOX) and cyclooxygenase (COX-2) activities (IC50 15.39 ± 0.82 µg/mL and 28.06 ± 1.1 µg/mL, respectively). Finally, ESPR5 presented a substantial hemolysis suppressive action with an IC50 of 65.13 ± 0.89 µg /mL, and a considerable inhibitory activity toward acetylcholine esterase activity (IC50 797.02 μg/mL). Together, this study reveals that secondary metabolites produced by Kocuria sp. strain AG5 marine bacteria serve as an important source of pharmacologically active compounds, and their impact on human health is expected to grow with additional global work and research.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khalid S. Alshallash
- College of Science and Humanities—Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh Province, Riyadh 11432, Saudi Arabia
| | - Ahmed Ghareeb
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ahmed M. Elazzazy
- National Research Centre, Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, Cairo 12622, Egypt
| | - Mohamed Sharaf
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Cairo 11751, Egypt
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fathy Elsayed Abdelgawad
- Medical Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Dalia El-Hossary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, P.O. Box 4700, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yosra A. Helmy
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| |
Collapse
|
15
|
Marrubium alysson L. Ameliorated Methotrexate-Induced Testicular Damage in Mice through Regulation of Apoptosis and miRNA-29a Expression: LC-MS/MS Metabolic Profiling. PLANTS 2022; 11:plants11172309. [PMID: 36079691 PMCID: PMC9460399 DOI: 10.3390/plants11172309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022]
Abstract
Despite the efficient anti-cancer capabilities of methotrexate (MTX), it may induce myelosuppression, liver dysfunction and testicular toxicity. The purpose of this investigation was to determine whether Marrubium alysson L. (M. alysson L.) methanolic extract and its polyphenol fraction could protect mouse testicles from MTX-induced damage. We also investigated the protective effects of three selected pure flavonoid components of M. alysson L. extract. Mice were divided into seven groups (n = 8): (1) normal control, (2) MTX, (3) Methanolic extract + MTX, (4) Polyphenolic fraction + MTX, (5) Kaempferol + MTX, (6) Quercetin + MTX, and (7) Rutin + MTX. Pre-treatment of mice with the methanolic extract, the polyphenolic fraction of M. alysson L. and the selected pure compounds ameliorated the testicular histopathological damage and induced a significant increase in the serum testosterone level and testicular antioxidant enzymes along with a remarkable decline in the malondialdehyde (MDA) level versus MTX alone. Significant down-regulation of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), p53 and miRNA-29a testicular expression was also observed in all the protected groups. Notably, the polyphenolic fraction of M. alysson L. displayed a more pronounced decline in the testicular levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and MDA, with higher testosterone levels relative to the methanolic extract. Further improvements in the Johnsen score, histopathological results and all biochemical assays were achieved by pre-treatment with the three selected pure compounds kaempferol, quercetin and rutin. In conclusion, M. alysson L. could protect against MTX-induced testicular injury by its antioxidant, anti-inflammatory, antiapoptotic activities and through the regulation of the miRNA-29a testicular expression. The present study also included chemical profiling of M. alysson L. extract, which was accomplished by LC-ESI-TOF-MS/MS analysis. Forty compounds were provisionally assigned, comprising twenty compounds discovered in the positive mode and seventeen detected in the negative mode.
Collapse
|