1
|
Oryan A, Afzali SA, Maffulli N. Manipulation of signaling pathways in bone tissue engineering and regenerative medicine: Current knowledge, novel strategies, and future directions. Injury 2024; 55:111976. [PMID: 39454294 DOI: 10.1016/j.injury.2024.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
During osteogenesis, a large number of bioactive molecules, macromolecules, cells, and cellular signals are activated to induce bone growth and development. The activation of molecular pathways leads to the occurrence of cellular events, ultimately resulting in observable changes. Therefore, in the studies of bone tissue engineering and regenerative medicine, it is essential to target fundamental events to exploit the mechanisms involved in osteogenesis. In this context, signaling pathways are activated during osteogenesis and trigger the activation of numerous other processes involved in osteogenesis. Direct influence of signaling pathways should allow to manipulate the signaling pathways themselves and impact osteogenesis. A combination of sequential cascades takes place to drive the progression of osteogenesis. Also, the occurrence of these processes and, more generally, cellular and molecular processes related to osteogenesis necessitate the presence of transcription factors and their activity. The present review focuses on outlining several signaling pathways and transcription factors influencing the development of osteogenesis, and describes various methods of their manipulation to induce and enhance bone formation.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Ali Afzali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nicola Maffulli
- Department of Orthopaedic and Trauma Surgery, Faculty of Medicine and Psychology, Sant'Andrea Hospital Sapienza University of Rome, Rome, Italy; Centre for Sport and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Stoke on Trent ST47QB, UK
| |
Collapse
|
2
|
Nashaat Alnagar A, Motawea A, Elamin KM, Abu Hashim II. Hyaluronic acid/lactoferrin-coated polydatin/PLGA nanoparticles for active targeting of CD44 receptors in lung cancer. Pharm Dev Technol 2024; 29:1016-1032. [PMID: 39392049 DOI: 10.1080/10837450.2024.2414937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Traditional chemotherapeutic drugs lack optimal efficacy and invoke severe adverse effects in cancer patients. Polydatin (PD), a phytomedicine, has gradually gained attention due to its antitumor activity. However, its low solubility and poor bioavailability are still cornerstone issues. The present study aimed to fabricate and develop hyaluronic acid/lactoferrin-double coated PD/PLGA nanoparticles via a layer-by-layer self-assembly technique for active targeting of CD44 receptors in lung cancer. Different molecular weights (M.wt.) of HA (32 and 110 kDa) were exploited to study the relationship between the HA M.wt. and the NPs targeting efficacy. The optimized formulations were fully characterized. Their cytotoxicity and cellular uptake were investigated against A549 cell line by CCK-8 kit and fluorescence imaging, respectively. Finally, HA110/Lf-coated PD/PLGA NPs (F9) were subjected to a competitive inhibition study to prove internalization through CD44 overexpressed receptors. The results verified the fabrication of F9 with a particle size of 174.87 ± 3.97 nm and a zeta potential of -24.37 ± 1.19 mV as well as spherical NPs architecture. Importantly, it provoked enhanced cytotoxicity (IC50 = 0.57 ± 0.02 µg/mL) and superior cellular uptake efficacy. To conclude, the current investigation lays the foundation for the prospective therapeutic avenue of F9 for active targeting of CD44 receptors in lung cancer.
Collapse
Affiliation(s)
- Ahmed Nashaat Alnagar
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| |
Collapse
|
3
|
Menotti F, Scutera S, Coppola B, Longo F, Mandras N, Cavallo L, Comini S, Sparti R, Fiume E, Cuffini AM, Banche G, Palmero P, Allizond V. Tuning of Silver Content on the Antibacterial and Biological Properties of Poly(ɛ-caprolactone)/Biphasic Calcium Phosphate 3D-Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2023; 15:3618. [PMID: 37688244 PMCID: PMC10489712 DOI: 10.3390/polym15173618] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There is a growing interest in tissue engineering, in which biomaterials play a pivotal role in promoting bone regeneration. Furthermore, smart functionalization can provide biomaterials with the additional role of preventing orthopedic infections. Due to the growing microbial resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their known wide range of bactericidal properties, are believed to be promising additives in developing antibacterial biomaterials. In this work, novel poly(ε-caprolactone) (PCL)-based 3D scaffolds have been designed and developed, where the polymer matrix was modified with both silver (Ag), to supply antibacterial behavior, and calcium phosphates (biphasic calcium phosphate, BCP) particles to impart bioactive/bioresorbable properties. The microstructural analysis showed that constructs were characterized by square-shaped macropores, in line with the morphology and size of the templating salts used as pore formers. Degradation tests demonstrated the important role of calcium phosphates in improving PCL hydrophilicity, leading to a higher degradation degree for BCP/PCL composites compared to the neat polymer after 18 days of soaking. The appearance of an inhibition halo around the silver-functionalized PCL scaffolds for assayed microorganisms and a significant (p < 0.05) decrease in both adherent and planktonic bacteria demonstrate the Ag+ release from the 3D constructs. Furthermore, the PCL scaffolds enriched with the lowest silver percentages did not hamper the viability and proliferation of Saos-2 cells. A synergic combination of antimicrobial, osteoproliferative and biodegradable features provided to 3D scaffolds the required potential for bone tissue engineering, beside anti-microbial properties for reduction in prosthetic joints infections.
Collapse
Affiliation(s)
- Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Comini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Anna Maria Cuffini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| |
Collapse
|
4
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
5
|
Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022; 14:nu14173519. [PMID: 36079777 PMCID: PMC9459740 DOI: 10.3390/nu14173519] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Phenolic compounds are natural phytochemicals that have recently reported numerous health benefits. Resveratrol, curcumin, and quercetin have recently received the most attention among these molecules due to their documented antioxidant effects. The review aims to investigate the effects of these molecules on bone metabolism and their role in several diseases such as osteopenia and osteoporosis, bone tumours, and periodontitis. The PubMed/Medline, Web of Science, Google Scholar, Scopus, Cochrane Library, and Embase electronic databases were searched for papers in line with the study topic. According to an English language restriction, the screening period was from January 2012 to 3 July 2022, with the following Boolean keywords: (“resveratrol” AND “bone”); (“curcumin” AND “bone”); (“quercetin” AND “bone”). A total of 36 papers were identified as relevant to the purpose of our investigation. The studies reported the positive effects of the investigated phenolic compounds on bone metabolism and their potential application as adjuvant treatments for osteoporosis, bone tumours, and periodontitis. Furthermore, their use on the titanium surfaces of orthopaedic prostheses could represent a possible application to improve the osteogenic processes and osseointegration. According to the study findings, resveratrol, curcumin, and quercetin are reported to have a wide variety of beneficial effects as supplement therapies. The investigated phenolic compounds seem to positively mediate bone metabolism and osteoclast-related pathologies.
Collapse
|