1
|
Park JH, Hwang YN, Na HH, Kim DY, Lee HJ, Kwon TH, Park JS, Kim KC. Cannabigerol Treatment Shows Antiproliferative Activity and Causes Apoptosis of Human Colorectal Cancer Cells. J Pharmacopuncture 2024; 27:332-339. [PMID: 39741567 PMCID: PMC11656058 DOI: 10.3831/kpi.2024.27.4.332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 01/03/2025] Open
Abstract
Objectives To determine growth inhibitory and anti-cancer effects of Cannabigerol (CBG) in human colorectal cancer cells. Methods Anti-proliferative effect of CBG was examined using MTT assay and two colorectal cancer cells (SW480 and LoVo cells). Cell death ratio was analyzed using Annexin V/PI staining experiment. Cell cycle distribution was analyzed using flow cytometry. We also performed western blot analysis on apoptotic marker proteins. Results CBG showed growth inhibitory effect in colorectal cancer cells using MTT assay. IC50 concentration of CBG was 34.89 μM in SW480 cells and 23.51 μM in LoVo cells. Annexin V/PI staining showed that CBG treatment increased apoptotic cells from 4.8% to 31.7% in SW480 cells and from 7.7% to 33.9% in LoVo cells. Flow cytometry confirmed that CBG increased sub G1 population via G1 arrest in both SW480 and LoVo cells. Western blot analysis showed that CBG increased expression levels of cell death-related proteins such as cleaved PARP-1, cleaved caspase 9, p53, and caspase 3. Conclusion CBG treatment shows antiproliferative activity and causes apoptosis of colorectal cancer cells, suggesting that CBG is applicable as a promising anticancer drug.
Collapse
Affiliation(s)
- Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon Center for System Imaging, Chuncheon, Republic of Korea
| | - Do-Yeon Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyo-Jun Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Kangwon Center for System Imaging, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Masoumi M, Manavi MA, Mohammad Jafari R, Mirzaei A, Hedayatyanfard K, Beigmohammadi MT, Dehpour AR. Cannabidiol Anticonvulsant Effects Against Lithium-Pilocarpine-Induced Status Epilepticus in Male Rats Are Mediated by Neuroinflammation Modulation and Cannabinoids 1 (CB1), But Not CB2 and GABA A Receptors. Cannabis Cannabinoid Res 2024; 9:797-808. [PMID: 37976207 DOI: 10.1089/can.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Background: Status epilepticus (SE) is a series of seizures that can lead to serious neurological damages. Cannabidiol (CBD) is extracted from the cannabis plant, which has been approved as an antiseizure medication. This study aimed to determine the efficacy of various doses of CBD on lithium-pilocarpine-induced SE in rats and possible involvement of multiple pharmacological pathways. We hypothesized that cannabinoid receptors type 1 (CB1) and CB2, as well as GABAA receptors, might have important roles in the anticonvulsant effects of CBD against SE by its anti-inflammatory effects. Methods: SE was induced by intraperitoneal (i.p.) injection of lithium (127 mg/kg, i.p.) and pilocarpine (60 mg/kg, i.p., 20 h after lithium). Forty-two male rats were divided into seven groups (including control and sham groups), and the treated groups received different doses of CBD (1, 3, 5, 10, and 25 mg/kg, i.p.). SE score was recorded over the next 2 h following pilocarpine injection. Then, we measured the levels of pro-inflammatory cytokines, including interleukin (IL)-lβ and tumor necrosis factor (TNF)-α, using ELISA kits. Also we analyzed the expression of CB1, CB2, and GABAA receptors using the Western blot technique. Results: CBD at 5 mg/kg significantly reduced Racine's scale and duration of seizures, and increased the onset time of seizure. Moreover, CBD 5 mg/kg caused significant reductions in the elevated levels of IL-lβ and TNF-α, as well as a significant increase in the decreased level of CB1 receptor expression compared to the control group. In other word, CBD reverted the effects of SE in terms of neuroinflammation and CB1 receptor. Based on the obtained results, CBD was not able to restore the declined levels of CB2 or GABAA receptors. Conclusion: Our study found anticonvulsant effects of CBD on the SE rat model induced by lithium-pilocarpine with probable involvement of CB1 receptors and anti-inflammatory effects by reducing IL-1β and TNF-α markers independent of CB2 and GABAA receptors.
Collapse
Affiliation(s)
- Mahla Masoumi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Manavi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Beigmohammadi
- Department of Intensive Care, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ye Q, Gui C, Jin D, Zhang J, Zhang J, Ma N, Xu L. Synergistic effect of cannabidiol with dasatinib on lung cancer by SRC/PI3K/AKT signal pathway. Biomed Pharmacother 2024; 173:116445. [PMID: 38503236 DOI: 10.1016/j.biopha.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Dasatinib-related resistance frequently occurs and may lead to the failure of chemotherapy; thus, dose interruptions are necessary. Cannabidiol (CBD) has potential for integration with orthodox cancer care. In this study, we explored the combination effect of CBD and dasatinib on A549 cells. CBD in combination with dasatinib could induce significant synergistic apoptosis in vitro (ZIP > 10) and in vivo. The combination of CBD and low-dose dasatinib exhibited antiproliferative and proapoptotic effects through up-regulation of caspase-3 and Bax, and down-regulation of Bcl-2 in A549 cells. The xenograft mouse model suggested that the combination was more efficient and safer. In short, CBD and low-dose dasatinib exhibited a synergistic effect on anticancer by targeting the SRC/PI3K/AKT signaling pathway, suggesting a potential therapeutic option for the treatment of lung cancer.
Collapse
Affiliation(s)
- Qianqian Ye
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Changqin Gui
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Di Jin
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jiazhen Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupation Health, Anhui No.2 Provincial People's Hospital, Hefei 230022, China.
| | - Na Ma
- Department of CT/MRI, Anhui No.2 Provincial People's Hospital, Hefei 230022, China.
| | - Li Xu
- Department of Hematology, Anhui No.2 Provincial People's Hospital, Hefei 230022, China.
| |
Collapse
|
4
|
Li Y, Sharma A, Hoffmann MJ, Skowasch D, Essler M, Weiher H, Schmidt-Wolf IGH. Discovering single cannabidiol or synergistic antitumor effects of cannabidiol and cytokine-induced killer cells on non-small cell lung cancer cells. Front Immunol 2024; 15:1268652. [PMID: 38558822 PMCID: PMC10979545 DOI: 10.3389/fimmu.2024.1268652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction A multitude of findings from cell cultures and animal studies are available to support the anti-cancer properties of cannabidiol (CBD). Since CBD acts on multiple molecular targets, its clinical adaptation, especially in combination with cancer immunotherapy regimen remains a serious concern. Methods Considering this, we extensively studied the effect of CBD on the cytokine-induced killer (CIK) cell immunotherapy approach using multiple non-small cell lung cancer (NSCLC) cells harboring diverse genotypes. Results Our analysis showed that, a) The Transient Receptor Potential Cation Channel Subfamily V Member 2 (TRPV2) channel was intracellularly expressed both in NSCLC cells and CIK cells. b) A synergistic effect of CIK combined with CBD, resulted in a significant increase in tumor lysis and Interferon gamma (IFN-g) production. c) CBD had a preference to elevate the CD25+CD69+ population and the CD62L_CD45RA+terminal effector memory (EMRA) population in NKT-CIK cells, suggesting early-stage activation and effector memory differentiation in CD3+CD56+ CIK cells. Of interest, we observed that CBD enhanced the calcium influx, which was mediated by the TRPV2 channel and elevated phosphor-Extracellular signal-Regulated Kinase (p-ERK) expression directly in CIK cells, whereas ERK selective inhibitor FR180204 inhibited the increasing cytotoxic CIK ability induced by CBD. Further examinations revealed that CBD induced DNA double-strand breaks via upregulation of histone H2AX phosphorylation in NSCLC cells and the migration and invasion ability of NSCLC cells suppressed by CBD were rescued using the TRPV2 antagonist (Tranilast) in the absence of CIK cells. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. We further investigated the epigenetic effects of this synergy and found that adding CBD to CIK cells decreased the Long Interspersed Nuclear Element-1 (LINE-1) mRNA expression and the global DNA methylation level in NSCLC cells carrying KRAS mutation. Conclusions Taken together, CBD holds a great potential for treating NSCLC with CIK cell immunotherapy. In addition, we utilized NSCLC with different driver mutations to investigate the efficacy of CBD. Our findings might provide evidence for CBD-personized treatment with NSCLC patients.
Collapse
Affiliation(s)
- Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Hwang YN, Kwon IS, Park JH, Na HH, Kwon TH, Park JS, Kim KC. Cell death induction and intracellular vesicle formation in human colorectal cancer cells treated with Δ 9-Tetrahydrocannabinol. Genes Genomics 2023; 45:1463-1474. [PMID: 37837516 PMCID: PMC10682224 DOI: 10.1007/s13258-023-01466-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Δ9-Tetrahydrocannabinol (Δ9-THC) is a principal psychoactive extract of Cannabis sativa and has been traditionally used as palliative medicine for neuropathic pain. Cannabidiol (CBD), an extract of hemp species, has recently attracted increased attention as a cancer treatment, but Δ9-THC is also requiring explored pharmacological application. OBJECTIVE This study evaluated the pharmacological effects of Δ9-THC in two human colorectal cancer cell lines. We investigated whether Δ9-THC treatment induces cell death in human colorectal cancer cells. METHODS We performed an MTT assay to determine the pharmacological concentration of Δ9-THC. Annxein V and Western blot analysis confirmed that Δ9-THC induced apoptosis in colorectal cancer cells. Metabolic activity was evaluated using MitoTracker staining and ATP determination. We investigated vesicle formation by Δ9-THC treatment using GW9662, known as a PPARγ inhibitor. RESULTS The MTT assay showed that treatment with 40 μM Δ9-THC and above inhibited the proliferation of colorectal cancer cells. Multiple intracytoplasmic vesicles were detected upon microscopic observation, and fluorescence-activated cell sorting analysis showed cell death via G1 arrest. Δ9-THC treatment increased the expression of cell death marker proteins, including p53, cleaved PARP-1, RIP1, and RIP3, suggesting that Δ9-THC induced the death of colorectal cancer cells. Δ9-THC treatment also reduced ATP production via changes in Bax and Bcl-2. Δ9-THC regulated intracytoplasmic vesicle formation by modulating the expression of PPARγ and clathrin, adding that antiproliferative activity of Δ9-THC was also affected. CONCLUSION In conclusion, Δ9-THC regulated two functional mechanisms, intracellular vesicle formation and cell death. These findings can help to determine how cannabinoids can be used most effectively to improve the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea
- Kangwon Center for System Imaging, Chuncheon, Kangwon, 24341, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon, Kangwon, 24232, Republic of Korea
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul, 07525, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Kangwon, 24341, Republic of Korea.
- Kangwon Center for System Imaging, Chuncheon, Kangwon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Kwon IS, Hwang YN, Park JH, Na HH, Kwon TH, Park JS, Kim KC. Metallothionein Family Proteins as Regulators of Zinc Ions Synergistically Enhance the Anticancer Effect of Cannabidiol in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:16621. [PMID: 38068944 PMCID: PMC10705991 DOI: 10.3390/ijms242316621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabidiol (CBD) is a chemical obtained from Cannabis sativa; it has therapeutic effects on anxiety and cognition and anti-inflammatory properties. Although pharmacological applications of CBD in many types of tumors have recently been reported, the mechanism of action of CBD is not yet fully understood. In this study, we perform an mRNA-seq analysis to identify the target genes of CBD after determining the cytotoxic concentrations of CBD using an MTT assay. CBD treatment regulated the expression of genes related to DNA repair and cell division, with metallothionein (MT) family genes being identified as having highly increased expression levels induced by CBD. It was also found that the expression levels of MT family genes were decreased in colorectal cancer tissues compared to those in normal tissues, indicating that the downregulation of MT family genes might be highly associated with colorectal tumor progression. A qPCR experiment revealed that the expression levels of MT family genes were increased by CBD. Moreover, MT family genes were regulated by CBD or crude extract but not by other cannabinoids, suggesting that the expression of MT family genes was specifically induced by CBD. A synergistic effect between CBD and MT gene transfection or zinc ion treatment was found. In conclusion, MT family genes as novel target genes could synergistically increase the anticancer activity of CBD by regulating the zinc ions in human colorectal cancer cells.
Collapse
Affiliation(s)
- In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon 24232, Kangwon, Republic of Korea;
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul 07525, Republic of Korea;
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| |
Collapse
|
7
|
Yan C, Li Y, Liu H, Chen D, Wu J. Antitumor mechanism of cannabidiol hidden behind cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188905. [PMID: 37164234 DOI: 10.1016/j.bbcan.2023.188905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Cannabinoids have been utilized for recreational and therapeutic purposes for over 4,000 years. As the primary ingredient in exogenous cannabinoids, Cannabidiol (CBD) has drawn a lot of interest from researchers due to its negligible psychotropic side effects and potential tumor-suppressing properties. However, the obscure mechanisms that underlie them remain a mystery. Complex biological mechanisms are involved in the progression of cancer, and malignancies have a variety of acquired biological capabilities, including sustained proliferation, death evasion, neovascularization, tissue invasion and metastasis, immune escape, metabolic reprogramming, induction of tumor-associated inflammation, cancerous stemness and genomic instability. Nowadays, the role of CBD hidden in these hallmarks is gradually revealed. Nevertheless, flaws or inconsistencies in the recent studies addressing the anti-cancer effects of CBD still exist. The purpose of this review is to evaluate the potential mechanisms underlying the role of CBD in a range of tumor-acquired biological capabilities. We propose potential drugs that may have a synergistic effect with CBD and provide optional directions for future research.
Collapse
Affiliation(s)
- Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
8
|
Aliya S, Farani MR, Kim E, Kim S, Gupta VK, Kumar K, Huh YS. Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials. ENVIRONMENTAL RESEARCH 2023; 231:115862. [PMID: 37146933 DOI: 10.1016/j.envres.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Cancer is a major global public health concern that affects both industrialized and developing nations. Current cancer chemotherapeutic options are limited by side effects, but plant-derived alternatives and their derivatives offer the possibilities of enhanced treatment response and reduced side effects. A plethora of recently published articles have focused on treatments based on cannabinoids and cannabinoid analogs and reported that they positively affect healthy cell growth and reverse cancer-related abnormalities by targeting aberrant tumor microenvironments (TMEs), lowering tumorigenesis, preventing metastasis, and/or boosting the effectiveness of chemotherapy and radiotherapy. Furthermore, TME modulating systems are receiving much interest in the cancer immunotherapy field because it has been shown that TMEs have significant impacts on tumor progression, angiogenesis, invasion, migration, epithelial to mesenchymal transition, metastasis and development of drug resistance. Here, we have reviewed the effective role of cannabinoids, their analogs and cannabinoid nano formulations on the cellular components of TME (endothelial cells, pericytes, fibroblast and immune cells) and how efficiently it retards the progression of carcinogenesis is discussed. The article summarizes the existing research on the molecular mechanisms of cannabinoids regulation of the TME and finally highlights the human studies on cannabinoids' active interventional clinical trials. The conclusion outlines the need for future research involving clinical trials of cannabinoids to demonstrate their efficacy and activity as a treatment/prevention for various types of human malignancies.
Collapse
Affiliation(s)
- Sheik Aliya
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Eunsu Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Suheon Kim
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Krishan Kumar
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|