1
|
Dong M, Galvan Achi JM, Du R, Rong L, Cui Q. Development of SARS-CoV-2 entry antivirals. CELL INSIGHT 2024; 3:100144. [PMID: 38323318 PMCID: PMC10844678 DOI: 10.1016/j.cellin.2023.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 02/08/2024]
Abstract
The global outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatened human health and public safety. The development of anti-SARS-CoV-2 therapies have been essential to curb the spread of SARS-CoV-2. Particularly, antivirals targeting viral entry have become an attractive target for the development of anti-SARS-CoV-2 therapies. In this review, we elucidate the mechanism of SARS-CoV-2 viral entry and summarize the development of antiviral inhibitors targeting viral entry. Moreover, we speculate upon future directions toward more potent inhibitors of SARS-CoV-2 entry. This study is expected to provide novel insights for the efficient discovery of promising candidate drugs against the entry of SARS-CoV-2, and contribute to the development of broad-spectrum anti-coronavirus drugs.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Jazmin M. Galvan Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL60612, USA
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266122, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266122, China
| |
Collapse
|
2
|
Xiao Y, Wang L, Fang SS, Luo F, Chen SL, Ye L, Hou W. Direct blue 53, a biological dye, inhibits SARS-CoV-2 infection by blocking ACE2 and spike interaction in vitro and in vivo. Virology 2023; 586:105-114. [PMID: 37531695 DOI: 10.1016/j.virol.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
COVID-19 is a global health problem caused by SARS-CoV-2, which has led to over 600 million infections and 6 million deaths. Developing novel antiviral drugs is of pivotal importance to slow down the epidemic swiftly. In this study, we identified five azo compounds as effective antiviral drugs to SARS-CoV-2, and mechanism study revealed their targets for impeding viral particles' ability to bind to host receptors. Direct Blue 53, which displayed the strongest inhibitory impact, inhibited five mutant strains at micromole. In vitro, mechanism study demonstrated Direct Blue 53 inhibited viral infection through interaction with the spike of SARS-CoV-2. And 25 mg/kg/d compound treatment showed 50% or 60% survival protection against lethal Delta or Omicron BA.2 infection in vivo. Taken together, our results demonstrate that azo compounds with dimethyl-biphenyl-diyl-bis(azo)bis structure may be promising anti-SARS-CoV-2 drug candidates, which provide practicable therapies with the aid of structural optimizations and further research.
Collapse
Affiliation(s)
- Yu Xiao
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Ling Wang
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong Province, China
| | - Shi-Song Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong Province, China
| | - Fan Luo
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Shu-Liang Chen
- State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Lin Ye
- Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong Province, China.
| | - Wei Hou
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, Guangdong Province, China; State Key Laboratory of Virology, Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China; School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
3
|
Kazachinskaia EI, Zibareva LN, Filonenko ES, Ivanova AV, Gadzhieva MM, Bekshokov KK, Kononova YV, Chepurnov AA, Shestopalov AМ. Investigation of the inhibitory activity of extracts, fractions and secondary metabolites of <i>Silene</i> spp. (<i>Caryophyllaceae</i>) and <i>Serratula cupuliformis</i> (<i>Asteraceae</i>) on the replication of SARS-CoV-2 coronavirus. SOUTH OF RUSSIA: ECOLOGY, DEVELOPMENT 2023. [DOI: 10.18470/1992-1098-2023-1-62-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aim. In vitro analysis of the inhibitory activity of extracts, fractions and secondary metabolites of plants of the genus Silene [Caryophylaceae] and Serratula cupuliformis [Asteraceae) on the replication of SARS-CoV-2.Material and Methods. Silene spp. and Serratula cupuliformis of the Siberian Botanical Garden of National Research Tomsk State University were used. Ethanol extracts and butanol fractions of Silene spp. were prepared. The flavonoid shaftoside and the ecdysteroid 20-hydroxyecdysone from Lychnis chalcedonica were isolated. Analysis of BAS was carried out by the HPLC method. In vitro analysis of the inhibitory activity of extracts on SARS-CoV-2 replication was performed in Vero cell culture by direct inactivation [neutralization) of virions. Comparison samples were dry ethanol extracts of chaga [Inonotus obliquus, Basidiomycota), spices of cloves [Syzygium aromaticum, Myrtaceae) and root of licorice [Glycyrrhiza glabra L., Fabaceae).Results. The inhibitory activity of ethanol extracts and butanol fractions of Silene spp., as well as individual compounds [shaftozide and 20-E) was revealed in the range of 50% effective concentrations [EC50) when dissolved in water from 339.85±83.92 pg/ml to 1.59±0.39 pg/ml and when dissolved in DMSO from 119.34±26.34 pg/ml to 2.22±0.57 pg/ml, respectively. The butanol fraction of Serratula cupuliformis was active with EC50=21.74±4.80 and 27.42±6.05 pg/mL. These results for some samples of Silene spp. and Serratula cupuliformis are comparable to the EC50 values of the comparators.Conclusion. The results obtained suggest the presence of biologically active substances in the herbal preparations studied that act destructively on virions of SARS-CoV-2 and affect one of the main stages of its "life" cycle - on the attachment to receptors of sensitive cells.
Collapse
Affiliation(s)
- E. I. Kazachinskaia
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Vector State Research Centre of Virology and Biotechnology
| | | | | | - A. V. Ivanova
- Vector State Research Centre of Virology and Biotechnology
| | | | - K. K. Bekshokov
- I.M. Sechenov First Moscow State Medical University, Russian Ministry of Health
| | - Yu. V. Kononova
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences
| | - A. A. Chepurnov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
| | - A. М. Shestopalov
- Research Institute of Virology, Federal Research Centre of Fundamental and Translational Medicine, Siberian Branch, Russian Academy of Sciences; Dagestan State University
| |
Collapse
|
4
|
Pirolli D, Righino B, Camponeschi C, Ria F, Di Sante G, De Rosa MC. Virtual screening and molecular dynamics simulations provide insight into repurposing drugs against SARS-CoV-2 variants Spike protein/ACE2 interface. Sci Rep 2023; 13:1494. [PMID: 36707679 PMCID: PMC9880937 DOI: 10.1038/s41598-023-28716-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
After over two years of living with Covid-19 and hundreds of million cases worldwide there is still an unmet need to find proper treatments for the novel coronavirus, due also to the rapid mutation of its genome. In this context, a drug repositioning study has been performed, using in silico tools targeting Delta Spike protein/ACE2 interface. To this aim, it has been virtually screened a library composed by 4388 approved drugs through a deep learning-based QSAR model to identify protein-protein interactions modulators for molecular docking against Spike receptor binding domain (RBD). Binding energies of predicted complexes were calculated by Molecular Mechanics/Generalized Born Surface Area from docking and molecular dynamics simulations. Four out of the top twenty ranking compounds showed stable binding modes on Delta Spike RBD and were evaluated also for their effectiveness against Omicron. Among them an antihistaminic drug, fexofenadine, revealed very low binding energy, stable complex, and interesting interactions with Delta Spike RBD. Several antihistaminic drugs were found to exhibit direct antiviral activity against SARS-CoV-2 in vitro, and their mechanisms of action is still debated. This study not only highlights the potential of our computational methodology for a rapid screening of variant-specific drugs, but also represents a further tool for investigating properties and mechanisms of selected drugs.
Collapse
Affiliation(s)
- Davide Pirolli
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy
| | - Chiara Camponeschi
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, 06132, Perugia, Italy
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168, Rome, Italy.
| |
Collapse
|