1
|
Xu Y, Bei Z, Li M, Qiu K, Ren J, Chu B, Zhao Y, Qian Z. Biomaterials for non-invasive trans-tympanic drug delivery: requirements, recent advances and perspectives. J Mater Chem B 2024; 12:7787-7813. [PMID: 39044544 DOI: 10.1039/d4tb00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Various non-invasive delivery systems have recently been developed as an alternative to conventional injections. Local transdermal administration represents the most attractive method due to the low systemic side effects, excellent ease of administration, and persistent drug release. The tympanic membrane (TM), a major barrier between the outer and middle ear, has a similar structure of the stratum corneum compared to the surface of the skin. After several attempts, non-invasive trans-tympanic drug delivery has been regarded as a promising option in the treatment of middle and inner ear diseases. The round window membrane (RWM) was a possible non-invasive delivery approach from the middle to inner ear. The improved permeability of nanocarriers crossing the RWM is a current hotspot in therapeutics for inner ear diseases. In this review, we include the latest studies exploring non-invasive trans-tympanic delivery to treat middle and inner ear diseases. Both passive and active delivery systems are described. A summary of the benefits and disadvantages of various delivery systems in clinical practice and production procedures is introduced. Finally, future possible approaches for its effective application as a non-invasive middle and inner ear drug delivery system are characterised.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Qiu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Goyal MM, Shen SA, Lehar M, Martinez A, Hiel H, Wang C, Liu Y, Wang C, Sun DQ. A Benchtop Round Window Model for Studying Magnetic Nanoparticle Transport to the Inner Ear. Laryngoscope 2024; 134:3355-3362. [PMID: 38379206 DOI: 10.1002/lary.31345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION The round window membrane (RWM) presents a significant barrier to the local application of therapeutics to the inner ear. We demonstrate a benchtop preclinical RWM model and evaluate superparamagnetic iron oxide nanoparticles (SPIONs) as vehicles for magnetically assisted drug delivery. METHODS Guinea pig RWM explants were inset into a 3D-printed dual chamber benchtop device. Custom-synthesized 7-nm iron core nanoparticles were modified with different polyethylene glycol chains to yield two sizes of SPIONs (NP-PEG600 and NP-PEG3000) and applied to the benchtop model with and without a magnetic field. Histologic analysis of the RWM was performed using transmission electron microscopy (TEM) and confocal microscopy. RESULTS Over a 4-h period, 19.5 ± 1.9% of NP-PEG3000 and 14.6 ± 1.9% of NP-PEG600 were transported across the guinea pig RWM. The overall transport increased by 1.45× to 28.4 ± 5.8% and 21.0 ± 2.0%, respectively, when a magnetic field was applied. Paraformaldehyde fixation of the RWM decreased transport significantly (NP-PEG3000: 7.6 ± 1.5%; NP-PEG600: 7.0 ± 1.6%). Confocal and electron microscopy analysis demonstrated nanoparticle localization throughout all cellular layers and layer-specific transport characteristics within RWM. CONCLUSION The guinea pig RWM explant benchtop model allows for targeted and practical investigations of transmembrane transport in the development of nanoparticle drug delivery vehicles. The presence of a magnetic field increases SPION delivery by 45%-50% in a nanoparticle size- and cellular layer-dependent manner. LEVEL OF EVIDENCE NA Laryngoscope, 134:3355-3362, 2024.
Collapse
Affiliation(s)
- Mukund M Goyal
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarek A Shen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Lehar
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angela Martinez
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hakim Hiel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Canhui Wang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yulin Liu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel Q Sun
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Shen SA, Goyal MM, Lane K, Lehar M, Sun DQ. Guinea Pig Round Window Membrane Explantation for Ex Vivo Studies. J Vis Exp 2024. [PMID: 38465931 PMCID: PMC11375451 DOI: 10.3791/65816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Efficient and minimally invasive drug delivery to the inner ear is a significant challenge. The round window membrane (RWM), being one of the few entry points to the inner ear, has become a vital focus of investigation. However, due to the complexities of isolating the RWM, our understanding of its pharmacokinetics remains limited. The RWM comprises three distinct layers: the outer epithelium, the middle connective tissue layer, and the inner epithelial layer, each potentially possessing unique delivery properties. Current models for investigating transport across the RWM utilize in vivo animal models or ex vivo RWM models which rely on cell cultures or membrane fragments. Guinea pigs serve as a validated preclinical model for the investigation of drug pharmacokinetics within the inner ear and are an important animal model for the translational development of delivery vehicles to the cochlea. In this study, we describe an approach for explantation of a guinea pig RWM with surrounding cochlear bone for benchtop drug delivery experiments. This method allows for preservation of native RWM architecture and may provide a more realistic representation of barriers to transport than current benchtop models.
Collapse
Affiliation(s)
- Sarek A Shen
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine;
| | - Mukund Madhav Goyal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering
| | - Kelly Lane
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine
| | - Mohamed Lehar
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine
| | - Daniel Q Sun
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine
| |
Collapse
|
4
|
Birru B, Veit JGS, Arrigali EM, Van Tine J, Barrett-Catton E, Tonnerre Z, Diaz P, Serban MA. Hyaluronic acid-ibuprofen conjugation: a novel ototherapeutic approach protecting inner ear cells from inflammation-mediated damage. Front Pharmacol 2024; 15:1355283. [PMID: 38425644 PMCID: PMC10902153 DOI: 10.3389/fphar.2024.1355283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
There is a substantial need of effective drugs for the treatment of hearing loss, which affects nearly 500 million individuals globally. Hearing loss can be the result of intense or prolonged noise exposure, ototoxic drugs, infections, and trauma, which trigger inflammatory signaling cascades that lead to irreversible damage to cochlear structures. To address this, we developed and characterized a series of covalent conjugates of anti-inflammatory drugs to hyaluronic acid (HA), for potential use as topical ototherapeutics. These conjugates were tested in in vitro assays designed to mirror physiological processes typically observed with acoustic trauma. Intense noise exposure leads to macrophage recruitment to the cochlea and subsequent inflammatory damage to sensory cells. We therefore first tested our conjugates' ability to reduce the release of inflammatory cytokines in macrophages. This anti-inflammatory effect on macrophages also translated to increased cochlear cell viability. In our initial screening, one conjugate, ibuprofen-HA, demonstrated significantly higher anti-inflammatory potential than its counterparts. Subsequent cytokine release profiling of ibuprofen-HA further confirmed its ability to reduce a wider range of inflammatory markers, to a greater extent than its equivalent unconjugated drug. The conjugate's potential as a topical therapeutic was then assessed in previously developed tympanic and round window membrane tissue permeation models. As expected, our data indicate that the conjugate has limited tympanic membrane model permeability; however, it readily permeated the round window membrane model and to a greater extent than the unconjugated drug. Interestingly, our data also revealed that ibuprofen-HA was well tolerated in cellular and tissue cytocompatibility assays, whereas the unconjugated drug displayed significant cytotoxicity at equivalent concentrations. Moreover, our data highlighted the importance of chemical conjugation of ibuprofen to HA; the conjugate had improved anti-inflammatory effects, significantly reduced cytotoxicity, and is more suitable for therapeutic formulation. Overall, this work suggests that ibuprofen-HA could be a promising safe and effective topical ototherapeutic for inflammation-mediated cochlear damage.
Collapse
Affiliation(s)
- Bhaskar Birru
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Joachim G. S. Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Elizabeth M. Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jack Van Tine
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Emma Barrett-Catton
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Zachary Tonnerre
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT, United States
| |
Collapse
|
5
|
Gunewardene N, Ma Y, Lam P, Wagstaff S, Cortez-Jugo C, Hu Y, Caruso F, Richardson RT, Wise AK. Developing the supraparticle technology for round window-mediated drug administration into the cochlea. J Control Release 2023; 361:621-635. [PMID: 37572963 DOI: 10.1016/j.jconrel.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 μg of NT3 loaded per SP that weights ~50 μg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 μg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 μg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick Lam
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
6
|
An In Vitro Model for Characterization of Drug Permeability across the Tympanic Membrane. Pharmaceuticals (Basel) 2022; 15:ph15091114. [PMID: 36145335 PMCID: PMC9503993 DOI: 10.3390/ph15091114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Otic disorders, such as otitis media and hearing loss, affect a substantial portion of the global population. Despite this, oto-therapeutics, in particular those intended to treat hearing loss, have seen limited development and innovation. A significant factor to this is likely a result of the inherent costs and complexities of drug discovery and development. With in vitro 3D tissue models seeing increased utility for the rapid, high-throughput screening of drug candidates, it stands to reason that the field of otology could greatly benefit from such innovations. In this study, we propose and describe an in vitro 3D model, designed using a physiologically based approach, which we suggest can be used to estimate drug permeability across human tympanic membranes (TM). We characterize the permeability properties of several template drugs in this model under various growth and storage conditions. The availability of such cost-effective, rapid, high-throughput screening tools should allow for increased innovation and the discovery of novel drug candidates over the currently used animal models. In the context of this TM permeation model, it may promote the development of topical drugs and formulations that can non-invasively traverse the TM and provide tissue-targeted drug delivery as an alternative to systemic treatment, an objective which has seen limited study until present.
Collapse
|