1
|
Hua T, Yao F, Wang H, Liu W, Zhu X, Yao Y. Megakaryocyte in sepsis: the trinity of coagulation, inflammation and immunity. Crit Care 2024; 28:442. [PMID: 39741325 DOI: 10.1186/s13054-024-05221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Megakaryocytes are traditionally recognized as cells responsible for platelet production. However, beyond their role in thrombopoiesis, megakaryocytes also participate in inflammatory responses and regulate immune system functions. Sepsis, characterized by life-threatening organ dysfunction due to a dysregulated response to infection, prominently features coagulopathy, severe inflammation, and immune dysfunction as key pathophysiological aspects. AIM OF REVIEW Given the diverse functions of megakaryocytes, we explore their roles in coagulation in the context of sepsis, and also in inflammatory and immune regulation. We try to infer future research directions and potential strategies for sepsis prevention and treatment based on the properties of megakaryocytes. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on the functions of megakaryocytes and pathophysiological changes in sepsis. Specific emphasis is given to the role of megakaryocytes in sepsis, which suggests value of future research and clinical application.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Fenghua Yao
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Haitao Wang
- Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Wei Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Chinese PLA Medical School, Beijing, 100853, China.
| | - Xiaomei Zhu
- Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China.
| | - Yongming Yao
- Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China.
| |
Collapse
|
2
|
Chantanaskul T, Patumcharoenpol P, Roytrakul S, Kingkaw A, Vongsangnak W. Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis. Int J Mol Sci 2024; 25:13533. [PMID: 39769296 PMCID: PMC11676981 DOI: 10.3390/ijms252413533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein-protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome-mycobiome-human gut studies associated with AD and other allergic diseases in infants.
Collapse
Affiliation(s)
- Thanawit Chantanaskul
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Sittirak Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 144 Thailand Science Park, Phaholyothin Road, Pathum Thani 12120, Thailand;
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
3
|
Wu M, Yan Y, Xie X, Bai J, Ma C, Du X. Effect of endothelial responses on sepsis-associated organ dysfunction. Chin Med J (Engl) 2024; 137:2782-2792. [PMID: 39501810 DOI: 10.1097/cm9.0000000000003342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Sepsis-related organ dysfunction is associated with increased morbidity and mortality. Previous studies have found that the endothelium plays crucial roles in maintaining the vascular permeability during sepsis, as well as in regulating inflammation and thrombosis. During sepsis, endothelial cells may release cytokines, chemokines, and pro-coagulant factors, as well as express adhesion molecules. In general, endothelial responses during sepsis typically inhibit bacterial transmission and coordinate leukocyte recruitment to promote bacterial clearance. However, excessive or prolonged endothelial activation can lead to impaired microcirculation, tissue hypoperfusion, and organ dysfunction. Given the structural and functional heterogeneity of endothelial cells in different organs, there are potential differences in endothelial responses by organ type, and the risk of organ damage may vary accordingly. This article reviews the endothelial response observed in sepsis and its effects on organ function, summarizes current progress in the development of therapeutic interventions targeting the endothelial response, and discusses future research directions to serve as a reference for researchers in the field.
Collapse
Affiliation(s)
- Miao Wu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyu Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xianjin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
4
|
Frostegård A, Haegerstrand A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5-A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals (Basel) 2024; 17:979. [PMID: 39204083 PMCID: PMC11357257 DOI: 10.3390/ph17080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Despite progress in the management of patients with retinal vascular and degenerative diseases, there is still an unmet clinical need for safe and effective therapeutic options with novel mechanisms of action. Recent mechanistic insights into the pathogenesis of retinal diseases with a prominent vascular component, such as retinal vein occlusion (RVO), diabetic retinopathy (DR) and wet age-related macular degeneration (AMD), may open up new treatment paradigms that reach beyond the inhibition of vascular endothelial growth factor (VEGF). Phosphatidylserine (PS) is a novel lipid target that is linked to the pathophysiology of several human diseases, including retinal diseases. PS acts upstream of VEGF and complement signaling pathways. Annexin A5 is a protein that targets PS and inhibits PS signaling. This review explores the current understanding of the potential roles of PS as a target and Annexin A5 as a therapeutic. The clinical development status of Annexin A5 as a therapeutic and the potential utility of PS-Annexin A5 as a theranostic pairing in retinal vascular conditions in particular is described.
Collapse
Affiliation(s)
- Anna Frostegård
- Annexin Pharmaceuticals AB, Kammakargatan 48, S-111 60 Stockholm, Sweden
- Unit of Immunology and Chronic Disease, IMM, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
5
|
Tschirhart BJ, Lu X, Mokale Kognou AL, Martin CM, Slessarev M, Fraser DD, Leligdowicz A, Urquhart B, Feng Q. Pharmacokinetics of recombinant human annexin A5 (SY-005) in patients with severe COVID-19. Front Pharmacol 2024; 14:1299613. [PMID: 38269269 PMCID: PMC10806122 DOI: 10.3389/fphar.2023.1299613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Objective: Annexin A5 is a phosphatidylserine binding protein with anti-inflammatory, anticoagulant and anti-apoptotic properties. Preclinical studies have shown that annexin A5 inhibits pro-inflammatory responses and improves organ function and survival in rodent models of sepsis. This clinical trial aimed to evaluate the pharmacokinetic (PK) properties of the recombinant human annexin A5 (SY-005) in severe COVID-19. Methods: This was a pilot randomized, double-blind, placebo-controlled trial. Severe COVID-19 patients were randomly assigned to receive intravenous 50 μg/kg (low dose, n = 3), 100 μg/kg (high dose, n = 5) of SY-005 or placebo (n = 5) every 12 h for 7 days. Plasma SY-005 levels were assessed using enzyme-linked immunosorbent assay (ELISA) and the PK parameters were determined using non-compartmental analysis. Results: All patients treated with SY-005 had a normal baseline estimated glomerular filtration rate (eGFR, 104-125 mL/min/1.73 m2). Both low and high doses of SY-005 were cleared within 6 h after intravenous administration. Plasma maximum concentrations (Cmax), half-life, clearance and volume distribution of low and high doses of SY-005 were 402.4 and 848.9 ng/mL, 0.92 and 0.96 h, 7.52 and 15.19 L/h, and 9.98 and 20.79 L, respectively. Daily pre-dose circulating annexin A5 levels were not significantly different when SY-005 was administered at the low or the high dose 12-h intervals. There was no significant effect on activated partial thromboplastin time (aPTT) or INR (international normalized ratio of prothrombin time) during 7 days of SY-005 treatment. Conclusion: SY-005 doses of 50 and 100 μg/kg were detectable and subsequently cleared from the plasma in severe COVID-19 patients with normal baseline renal function. There was no significant plasma SY-005 accumulation 6 h after drug administration and coagulation was not altered during 7 days of treatment. Clinical trials Registration: This study was registered with ClinicalTrials.gov (NCT04748757, first posted on 10 February 2021).
Collapse
Affiliation(s)
- Brent J. Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Xiangru Lu
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Aristide Laurel Mokale Kognou
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M. Martin
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Marat Slessarev
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Douglas D. Fraser
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Aleksandra Leligdowicz
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Robarts Research Institute, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Department of Microbiology and Immunology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Bradley Urquhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|