1
|
Bramwell LR, Harries LW. Senescence, regulators of alternative splicing and effects of trametinib treatment in progeroid syndromes. GeroScience 2024; 46:1861-1879. [PMID: 37751047 PMCID: PMC10828446 DOI: 10.1007/s11357-023-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Black BJ, Ghazal RE, Lojek N, Williams V, Rajput JS, Lawson JM. Phenotypic Screening of Prospective Analgesics Among FDA-Approved Compounds using an iPSC-Based Model of Acute and Chronic Inflammatory Nociception. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303724. [PMID: 38189546 PMCID: PMC10953557 DOI: 10.1002/advs.202303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Classical target-based drug screening is low-throughput, largely subjective, and costly. Phenotypic screening based on in vitro models is increasingly being used to identify candidate compounds that modulate complex cell/tissue functions. Chronic inflammatory nociception, and subsequent chronic pain conditions, affect peripheral sensory neuron activity (e.g., firing of action potentials) through myriad pathways, and remain unaddressed in regard to effective, non-addictive management/treatment options. Here, a chronic inflammatory nociception model is demonstrated based on induced pluripotent stem cell (iPSC) sensory neurons and glia, co-cultured on microelectrode arrays (MEAs). iPSC sensory co-cultures exhibit coordinated spontaneous extracellular action potential (EAP) firing, reaching a stable baseline after ≈27 days in vitro (DIV). Spontaneous and evoked EAP metrics are significantly modulated by 24-h incubation with tumor necrosis factor-alpha (TNF-α), representing an inflammatory phenotype. Compared with positive controls (lidocaine), this model is identified as an "excellent" stand-alone assay based on a modified Z' assay quality metric. This model is then used to screen 15 cherry-picked, off-label, Food and Drug Administration (FDA)-approved compounds; 10 of 15 are identified as "hits". Both hits and "misses" are discussed in turn. In total, this data suggests that iPSC sensory co-cultures on MEAs may represent a moderate-to-high-throughput assay for drug discovery targeting inflammatory nociception.
Collapse
Affiliation(s)
- Bryan James Black
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Rasha El Ghazal
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Neal Lojek
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria Williams
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Jai Singh Rajput
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Jennifer M. Lawson
- Department of Biomedical EngineeringFrancis College of EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
3
|
Kinnunen PC, Luker GD, Luker KE, Linderman JJ. Computational modeling implicates protein scaffolding in p38 regulation of Akt. J Theor Biol 2022; 555:111294. [PMID: 36195198 PMCID: PMC10394737 DOI: 10.1016/j.jtbi.2022.111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Cells process environmental cues by activating intracellular signaling pathways with numerous interconnections and opportunities for cross-regulation. We employed a systems biology approach to investigate intersections of kinase p38, a context-dependent tumor suppressor or promoter, with Akt and ERK, two kinases known to promote cell survival, proliferation, and drug resistance in cancer. Using live, single cell microscopy, multiplexed fluorescent reporters of p38, Akt, and ERK activities, and a custom automated image-processing pipeline, we detected marked heterogeneity of signaling outputs in breast cancer cells stimulated with chemokine CXCL12 or epidermal growth factor (EGF). Basal activity of p38 correlated inversely with amplitude of Akt and ERK activation in response to either ligand. Remarkably, small molecule inhibitors of p38 immediately decreased basal activities of Akt and ERK but increased the proportion of cells with high amplitude ligand-induced activation of Akt signaling. To identify mechanisms underlying cross-talk of p38 with Akt signaling, we developed a computational model incorporating subcellular compartmentalization of signaling molecules by scaffold proteins. Dynamics of this model revealed that subcellular scaffolding of Akt accounted for observed regulation by p38. The model also predicted that differences in the amount of scaffold protein in a subcellular compartment captured the observed single cell heterogeneity in signaling. Finally, our model predicted that reduction in kinase signaling can be accomplished by both scaffolding and direct kinase inhibition. However, scaffolding inhibition can potentiate future kinase activity by redistribution of pathway components, potentially amplifying oncogenic signaling. These studies reveal how computational modeling can decipher mechanisms of cross-talk between the p38 and Akt signaling pathways and point to scaffold proteins as central regulators of signaling dynamics and amplitude.
Collapse
Affiliation(s)
- Patrick C Kinnunen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Gary D Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109 United States
| | - Kathryn E Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI, 48109 United States
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 United States.
| |
Collapse
|
4
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Gudmundsrud R, Skjånes TH, Gilmour BC, Caponio D, Lautrup S, Fang EF. Crosstalk among DNA Damage, Mitochondrial Dysfunction, Impaired Mitophagy, Stem Cell Attrition, and Senescence in the Accelerated Ageing Disorder Werner Syndrome. Cytogenet Genome Res 2021; 161:297-304. [PMID: 34433164 DOI: 10.1159/000516386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Werner syndrome (WS) is an accelerated ageing disease caused by multiple mutations in the gene encoding the Werner DNA helicase (WRN). The major clinical features of WS include wrinkles, grey hair, osteoporosis, and metabolic phenomena such as atherosclerosis, diabetes, and fatty liver, and resemble those seen in normal ageing, but occur earlier, in middle age. Defective DNA repair resulting from mutations in WRN explain the majority of the clinical features of WS, but the underlying mechanisms driving the larger metabolic dysfunction remain elusive. Recent studies in animal models of WS and in WS patient cells and blood samples suggest the involvement of impaired mitophagy, NAD+ depletion, and accumulation of damaged mitochondria in metabolic dysfunction. This mini-review summarizes recent progress in the understanding of the molecular mechanisms of metabolic dysfunction in WS, with the involvement of DNA damage, mitochondrial dysfunction, mitophagy reduction, stem cell impairment, and senescence. Future studies on NAD+ and mitophagy may shed light on potential therapeutic strategies for the WS patients.
Collapse
Affiliation(s)
- Ruben Gudmundsrud
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Tarjei H Skjånes
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Brian C Gilmour
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
6
|
Awasthi A, Raju MB, Rahman MA. Current Insights of Inhibitors of p38 Mitogen-Activated Protein Kinase in Inflammation. Med Chem 2021; 17:555-575. [PMID: 32106802 DOI: 10.2174/1573406416666200227122849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The inflammatory process is one of the mechanisms by which our body upholds us from pathogens such as parasites, bacteria, viruses, and other harmful microorganisms. Inflammatory stimuli activate many intracellular signaling pathways such as the nuclear factor-kB (NF-kB) pathway and three mitogen-activated protein kinase (MAPK) pathways, which are mediated through extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. The p38 has evolved as an enticing target in treating many persistent inflammatory diseases. Hence, designing novel p38 inhibitors targeting MAPK pathways has acquired significance. OBJECTIVE Peruse to identify the lead target to discover novel p38MAPK inhibitors with different scaffolds having improved selectivity over the prototype drugs. METHODS Structure and the binding sites of p38MAPK were focused. Various scaffolds designed for inhibition and the molecules which have entered the clinical trials are discussed. RESULTS This review aspires to present the available information on the structure and the 3D binding sites of p38MAPK, various scaffolds designed for imidazole, urea, benzamide, azoles, quinoxaline, chromone, ketone as a potent p38MAPK inhibitors and their SAR studies and the molecules which have entered the clinical trials. CONCLUSION The development of successful selective p38MAPK inhibitors in inflammatory diseases is in progress despite all challenges. It was speculated that p38MAPK also plays an important role in treating diseases such as neuroinflammation, arterial inflammation, vascular inflammation, cancer and so on, which are posing the world with treatment challenges. In this review, clinical trials of drugs are discussed related to inflammatory and its related diseases. Research is in progress to design and develop novel p38MAPK inhibitors with minimal side effects.
Collapse
Affiliation(s)
- Archana Awasthi
- Department of Pharmaceutical Chemistry, Sri Venkateshwara College of Pharmacy, Madhapur, Hyderabad, Telangana, India
| | - Mantripragada Bhagavan Raju
- Department of Pharmaceutical Chemistry, Sri Venkateshwara College of Pharmacy, Madhapur, Hyderabad, Telangana, India
| | - Md Azizur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
8
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
9
|
Ahmad I, Shaikh M, Surana S, Ghosh A, Patel H. p38α MAP kinase inhibitors to overcome EGFR tertiary C797S point mutation associated with osimertinib in non-small cell lung cancer (NSCLC): emergence of fourth-generation EGFR inhibitor. J Biomol Struct Dyn 2020; 40:3046-3059. [DOI: 10.1080/07391102.2020.1844801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Matin Shaikh
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Sanjay Surana
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| |
Collapse
|
10
|
Lambert WS, Pasini S, Collyer JW, Formichella CR, Ghose P, Carlson BJ, Calkins DJ. Of Mice and Monkeys: Neuroprotective Efficacy of the p38 Inhibitor BIRB 796 Depends on Model Duration in Experimental Glaucoma. Sci Rep 2020; 10:8535. [PMID: 32444682 PMCID: PMC7244559 DOI: 10.1038/s41598-020-65374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/04/2020] [Indexed: 01/23/2023] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). Early progression involves retinal ganglion cell (RGC) axon dysfunction that precedes frank degeneration. Previously we demonstrated that p38 MAPK inhibition abates axonal dysfunction and slows degeneration in the inducible microbead occlusion model of glaucoma in rat. Here, we assessed the neuroprotective effect of topical eye delivery of the p38 MAPK inhibitor BIRB 796 in three models of glaucoma (microbead occlusion in rat and squirrel monkey and the genetic DBA/2 J mouse model) with distinct durations of IOP elevation. While BIRB 796 did not influence IOP, treatment over four weeks in rats prevented degradation of anterograde axonal transport to the superior colliculus and degeneration in the optic nerve. Treatment over months in the chronic DBA/2 J model and in the squirrel monkey model reduced expression and activation of p38 downstream targets in the retina and brain but did not rescue RGC axon transport or degeneration, suggesting the efficacy of BIRB 796 in preventing associated degeneration of the RGC projection depends on the duration of the experimental model. These results emphasize the importance of evaluating potential therapeutic compounds for neuroprotection in multiple models using elongated treatment paradigms for an accurate assessment of efficacy.
Collapse
Affiliation(s)
- Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Silvia Pasini
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - John W Collyer
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Cathryn R Formichella
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Purnima Ghose
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - Brian J Carlson
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA
| | - David J Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232-2337, USA.
| |
Collapse
|
11
|
Liu MY, Hua WK, Chen CJ, Lin WJ. The MKK-Dependent Phosphorylation of p38α Is Augmented by Arginine Methylation on Arg49/Arg149 during Erythroid Differentiation. Int J Mol Sci 2020; 21:ijms21103546. [PMID: 32429593 PMCID: PMC7278938 DOI: 10.3390/ijms21103546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
The activation of p38 mitogen-activated protein kinases (MAPKs) through a phosphorylation cascade is the canonical mode of regulation. Here, we report a novel activation mechanism for p38α. We show that Arg49 and Arg149 of p38α are methylated by protein arginine methyltransferase 1 (PRMT1). The non-methylation mutations of Lys49/Lys149 abolish the promotive effect of p38α on erythroid differentiation. MAPK kinase 3 (MKK3) is identified as the major p38α upstream kinase and MKK3-mediated activation of the R49/149K mutant p38α is greatly reduced. This is due to a profound reduction in the interaction of p38α and MKK3. PRMT1 can enhance both the methylation level of p38α and its interaction with MKK3. However, the phosphorylation of p38α by MKK3 is not a prerequisite for methylation. MAPK-activated protein kinase 2 (MAPKAPK2) is identified as a p38α downstream effector in the PRMT1-mediated promotion of erythroid differentiation. The interaction of MAPKAPK2 with p38α is also significantly reduced in the R49/149K mutant. Together, this study unveils a novel regulatory mechanism of p38α activation via protein arginine methylation on R49/R149 by PRMT1, which impacts partner interaction and thus promotes erythroid differentiation. This study provides a new insight into the complexity of the regulation of the versatile p38α signaling and suggests new directions in intervening p38α signaling.
Collapse
Affiliation(s)
- Mei-Yin Liu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
| | - Wei-Kai Hua
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan;
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (M.-Y.L.); (W.-K.H.)
- Correspondence: ; Tel.: +886-2-28267257
| |
Collapse
|
12
|
Raffa D, D'Anneo A, Plescia F, Daidone G, Lauricella M, Maggio B. Novel 4-(3-phenylpropionamido), 4-(2-phenoxyacetamido) and 4-(cinnamamido) substituted benzamides bearing the pyrazole or indazole nucleus: synthesis, biological evaluation and mechanism of action. Bioorg Chem 2018; 83:367-379. [PMID: 30408649 DOI: 10.1016/j.bioorg.2018.10.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/03/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023]
Abstract
Based on some common structural features of known compounds interfering with p53 pathways and our previously synthesized benzamides, we synthesized new ethyl 5-(4-substituted benzamido)-1-phenyl-1H-pyrazole-4-carboxylates 26a-c, ethyl 5-(4-substituted benzamido)-1-(pyridin-2-yl)-1H-pyrazole-4-carboxylates 27a-c and N-(1H-indazol-6-yl)-4-substituted benzamides 31a,b bearing in the 4 position of the benzamido moiety the 2-phenylpropanamido or 2-phenoxyacetamido or cinnamamido groups. A preliminary test to evaluate the antiproliferative activity against human lung carcinoma H292 cells highlighted how compound 26c showed the best activity. This last was therefore selected for further studies with the aim to find the mechanism of action. Compound 26c induces intrinsic apoptotic pathway by activating p53 and is also able to activate TRAIL-inducing death pathway by promoting increase of DR4 and DR5 death receptors, downregulation of c-FLIPL and caspase-8 activation.
Collapse
Affiliation(s)
- Demetrio Raffa
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy.
| | - Antonella D'Anneo
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, Via del Vespro 129, 90127 Palermo, Italy
| | - Fabiana Plescia
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppe Daidone
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy
| | - Marianna Lauricella
- University of Palermo, Department of Experimental Biomedicine and Clinical Neurosciences, Laboratory of Biochemistry, Via del Vespro 129, 90127 Palermo, Italy
| | - Benedetta Maggio
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Medicinal Chemistry and Pharmaceutical Technologies, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
13
|
Mechanical stretch aggravates aortic dissection by regulating MAPK pathway and the expression of MMP-9 and inflammation factors. Biomed Pharmacother 2018; 108:1294-1302. [PMID: 30372831 DOI: 10.1016/j.biopha.2018.09.129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
This study aimed to explore whether mechanical stretch aggravated aortic dissection through regulating MAPK pathway, MMP-9, and inflammation factors. We first established aortic dissection model rats. Mechanical stretch (3 g) was exerted on vascular ring of aortic dissection which was also treated by inhibitors of MAPK pathway (SB203580, SP600125, and U0126). HE and Masson staining showed that aortic dissection severity with 3 g tension was worse than that without tension (0 g); after the treatments of diverse inhibitors, the fracture and breakage of the elastic fibers decreased. The expression of MMP-9, TNF-α, IL-1β) p38/p-p38, JNK1/p-JNK1, and ERK1/2/p-ERK1/2 were determined by immunohistochemical analysis, RT-PCR, and western blot. No matter whether tension was exerted or inhibitors were added, there was no change in the expression of p38, JNK1, and ERK1/2. However, compared to the 0 g group, the expression of MMP-9, TNF-α, IL-1β, p-p38, p-JNK1, and p-ERK1/2 was significantly upregulated in the 3 g group (P < 0.05). In both 0 g and 3 g groups, the expression of MMP-9, TNF-α, IL-1β, p-p38, p-JNK1, and p-ERK1/2 was remarkably downregulated after inhibitors treatment (P < 0.05). In conclusion, mechanical stretch aggravated aortic dissection by regulating the MAPK pathway and the consequent expression of MMP-9 and inflammation factors.
Collapse
|
14
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling. Trends Mol Med 2017; 23:737-755. [PMID: 28735817 DOI: 10.1016/j.molmed.2017.06.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Rare hereditary disorders provide unequivocal evidence of the importance of genes in human disease pathogenesis. Familial syndromes that predispose to osteosarcomagenesis are invaluable in understanding the underlying genetics of this malignancy. Recently, patient-derived induced pluripotent stem cells (iPSCs) have been successfully utilized to model Li-Fraumeni syndrome (LFS)-associated bone malignancy, demonstrating that iPSCs can serve as an in vitro disease model to elucidate osteosarcoma etiology. We provide here an overview of osteosarcoma predisposition syndromes and review recently established iPSC disease models for these familial syndromes. Merging molecular information gathered from these models with the current knowledge of osteosarcoma biology will help us to gain a deeper understanding of the pathological mechanisms underlying osteosarcomagenesis and will potentially aid in the development of future patient therapies.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Brittany E Jewell
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; These authors contributed equally to this work
| | - Julian Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; These authors contributed equally to this work
| | - Linchao Lu
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lisa L Wang
- Texas Children's Cancer Center, Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Abstract
To generate new hypotheses, sometimes a "systems" approach is needed. In this review, I focus on the mitogen-activated kinase p38 because it has been recently shown to play an important role in the developmental programing and senescence of normal and stressed reproductive tissues. What follows is an overview of (i) pathways of p38 activation and their involvement in basic biological processes, (ii) evidence that p38 is involved in the homeostasis of reproductive tissues, (iii) how focus on p38 can be incorporated into investigation of normal and stressed pregnancies. Existence of excellent reviews will be mentioned as well as relevant animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
16
|
Borodkina AV, Shatrova AN, Nikolsky NN, Burova EB. The role of p38 MAP-kinase in stress-induced senescence of human endometrium-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16050023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Davis T, Brook AJC, Rokicki MJ, Bagley MC, Kipling D. Evaluating the Role of p38 MAPK in the Accelerated Cell Senescence of Werner Syndrome Fibroblasts. Pharmaceuticals (Basel) 2016; 9:ph9020023. [PMID: 27136566 PMCID: PMC4932541 DOI: 10.3390/ph9020023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 01/02/2023] Open
Abstract
Progeroid syndromes show features of accelerated ageing and are used as models for human ageing, of which Werner syndrome (WS) is one of the most widely studied. WS fibroblasts show accelerated senescence that may result from p38 MAP kinase activation since it is prevented by the p38 inhibitor SB203580. Thus, small molecule inhibition of p38-signalling may be a therapeutic strategy for WS. To develop this approach issues such as the in vivo toxicity and kinase selectivity of existing p38 inhibitors need to be addressed, so as to strengthen the evidence that p38 itself plays a critical role in mediating the effect of SB203580, and to find an inhibitor suitable for in vivo use. In this work we used a panel of different p38 inhibitors selected for: (1) having been used successfully in vivo in either animal models or human clinical trials; (2) different modes of binding to p38; and (3) different off-target kinase specificity profiles, in order to critically address the role of p38 in the premature senescence seen in WS cells. Our findings confirmed the involvement of p38 in accelerated cell senescence and identified p38 inhibitors suitable for in vivo use in WS, with BIRB 796 the most effective.
Collapse
Affiliation(s)
- Terence Davis
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF 14 4XN, UK.
| | - Amy J C Brook
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF 14 4XN, UK.
| | - Michal J Rokicki
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF 14 4XN, UK.
| | - Mark C Bagley
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, UK.
| | - David Kipling
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF 14 4XN, UK.
| |
Collapse
|
18
|
Bagley MC, Dwyer JE, Baashen M, Dix MC, Murziani PGS, Rokicki MJ, Kipling D, Davis T. The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells. Org Biomol Chem 2015; 14:947-56. [PMID: 26611938 DOI: 10.1039/c5ob02229k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microwave-assisted synthesis of the pyrazolyl ketone p38 MAPK inhibitor RO3201195 in 7 steps and 15% overall yield, and the comparison of its effect upon the proliferation of Werner Syndrome cells with a library of pyrazolyl ketones, strengthens the evidence that p38 MAPK inhibition plays a critical role in modulating premature cellular senescence in this progeroid syndrome and the reversal of accelerated ageing observed in vitro on treatment with SB203580.
Collapse
Affiliation(s)
- Mark C Bagley
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Involvement of p38 MAPK in the Drug Resistance of Refractory Epilepsy Through the Regulation Multidrug Resistance-Associated Protein 1. Neurochem Res 2015; 40:1546-53. [PMID: 26092535 PMCID: PMC4493797 DOI: 10.1007/s11064-015-1617-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/06/2015] [Accepted: 05/17/2015] [Indexed: 01/12/2023]
Abstract
Increased expression of multidrug-resistance associated protein 1 in brain tissue has been reported which lead to multidrug resistance of refractory epilepsy. However, the mechanism of up-regulated expression is still unclear. In our previous study, we have found that the MAPK signaling pathway mediated the expression of P-glycoprotein. So in this study, we used a rat model of refractory epilepsy to examine whether p38 MAPK affect the expression of MRP1 and the concentrations of AEDs in the brain. The expression of MRP1 and p38 MAPK was detected by immunofluorescence, Western-blot and real time-PCR, while the concentration of AEDs was measured by microdialysis and HPLC. The result showed that SB202190, the specific inhibitor of p38 MAPK, could down-regulate the expression of MRP1, while increase the concentrations of valproate and lamotrigine in hippocampus extracellular fluid of refractory epileptic rat. We demonstrate that p38 MAPK signaling pathway may be involved in drug resistance of refractory epilepsy by regulating MRP1.
Collapse
|
20
|
Bagley MC, Baashen M, Chuckowree I, Dwyer JE, Kipling D, Davis T. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells. Pharmaceuticals (Basel) 2015; 8:257-76. [PMID: 26046488 PMCID: PMC4491660 DOI: 10.3390/ph8020257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.
Collapse
Affiliation(s)
- Mark C Bagley
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK.
| | - Mohammed Baashen
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK.
| | - Irina Chuckowree
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK.
| | - Jessica E Dwyer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QJ, UK.
| | - David Kipling
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| | - Terence Davis
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
21
|
Bagley MC, Dwyer JE, Molina MDB, Rand AW, Rand HL, Tomkinson NCO. Microwave-assisted synthesis of 3-aminobenzo[b]thiophene scaffolds for the preparation of kinase inhibitors. Org Biomol Chem 2015; 13:6814-24. [DOI: 10.1039/c5ob00819k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microwave-assisted synthesis of 3-aminobenzo[b]thiophenes has been applied to 3 kinase inhibitor scaffolds.
Collapse
Affiliation(s)
- Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton, East Sussex
- UK
| | - Jessica E. Dwyer
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton, East Sussex
- UK
| | | | - Alexander W. Rand
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton, East Sussex
- UK
| | - Hayley L. Rand
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- Brighton, East Sussex
- UK
| | | |
Collapse
|
22
|
Lei YY, Wang WJ, Mei JH, Wang CL. Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors. Asian Pac J Cancer Prev 2014; 15:8539-48. [DOI: 10.7314/apjcp.2014.15.20.8539] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Nijmegen breakage syndrome fibroblasts expressing the C-terminal truncated NBN(p70) protein undergo p38/MK2-dependent premature senescence. Biogerontology 2014; 16:43-51. [PMID: 25214013 PMCID: PMC4305097 DOI: 10.1007/s10522-014-9530-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Fibroblasts from the progeroid Nijmegen breakage syndrome that express a truncated version of the nibrin protein (NBNp70) undergo premature senescence and have an enlarged morphology with high levels of senescence-associated β-galactosidase, although they do not have F-actin stress fibres. Growth of these fibroblasts in the continuous presence of p38 inhibitors resulted in a large increase in replicative capacity and changed the cellular morphology so that the cells resembled young normal fibroblasts. A similar effect was seen using an inhibitor of the p38 downstream effector kinase MK2. These data suggest that NBNp70 expressing cells undergo a degree of stress-induced replicative senescence via p38/MK2 activation, potentially due to increased telomere dysfunction, that may play a role in the progeroid features seen in this syndrome.
Collapse
|
24
|
Davis T, Tivey HSE, Brook AJC, Grimstead JW, Rokicki MJ, Kipling D. Activation of p38 MAP kinase and stress signalling in fibroblasts from the progeroid Rothmund-Thomson syndrome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1767-83. [PMID: 23001818 PMCID: PMC3776094 DOI: 10.1007/s11357-012-9476-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/09/2012] [Indexed: 05/12/2023]
Abstract
Rothmund-Thomson fibroblasts had replicative lifespans and growth rates within the range for normal fibroblasts; however, they show elevated levels of the stress-associated p38 MAP kinase, suggestive of stress during growth. Treatment with the p38 MAP kinase inhibitor SB203580 increased both lifespan and growth rate, as did reduction of oxidative stress using low oxygen in some strains. At replicative senescence p53, p21(WAF1) and p16(INK4A) levels were elevated, and abrogation of p53 using shRNA knockdown allowed the cells to bypass senescence. Ectopic expression of human telomerase allowed Rothmund-Thomson fibroblasts to bypass senescence. However, activated p38 was still present, and continuous growth for some telomerised clones required either a reduction in oxidative stress or SB203580 treatment. Overall, the evidence suggests that replicative senescence in Rothmund-Thomson cells resembles normal senescence in that it is telomere driven and p53 dependent. However, the lack of RECQL4 leads to enhanced levels of stress during cell growth that may lead to moderate levels of stress-induced premature senescence. As replicative senescence is believed to underlie human ageing, a moderate level of stress-induced premature senescence and p38 activity may play a role in the relatively mild ageing phenotype seen in Rothmund-Thomson.
Collapse
Affiliation(s)
- Terence Davis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK,
| | | | | | | | | | | |
Collapse
|
25
|
Bagley MC, Baashen M, Paddock VL, Kipling D, Davis T. Regiocontrolled synthesis of 3- and 5-aminopyrazoles, pyrazolo[3,4-d]pyrimidines, pyrazolo[3,4-b]pyridines and pyrazolo[3,4-b]quinolinones as MAPK inhibitors. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Davis T, Rokicki MJ, Bagley MC, Kipling D. The effect of small-molecule inhibition of MAPKAPK2 on cell ageing phenotypes of fibroblasts from human Werner syndrome. Chem Cent J 2013; 7:18. [PMID: 23360642 PMCID: PMC3562269 DOI: 10.1186/1752-153x-7-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/28/2013] [Indexed: 12/03/2022] Open
Abstract
Fibroblasts derived from the progeroid Werner syndrome (WS) show reduced replicative lifespan and a “stressed” morphology, both phenotypes being alleviated by using the p38 MAP kinase inhibitor SB203580. Because p38 is a major hub for the control of stress-signalling pathways we were interested in examining the possible role for downstream kinases in order to refine our understanding of the role of p38 signalling in regulation of WS cell growth. To this end we treated WS and normal fibroblasts with MK2 inhibitors to determine whether MK2 inhibition would affect either the growth or morphology of WS cells. The first inhibitor, 7,8-dihydroxy-2,4-diamino-3-cyanobenzopyranopyridine (inhibitor 2), resulted in inhibition of WS cell growth and had no effect on morphology, effects that occurred below the level needed to inhibit MK2 and thus suggestive of inhibitor toxicity. The second inhibitor, 2-(2-quinolin-3-ylpyridin-4-yl)-1,5,6,7-tetrahydro-4H-pyrrolo-[3,2-c]pyridin-4-one (CMPD16), resulted in a significant extension of WS fibroblast replicative capacity compared to normal cells. In addition, CMPD16 reverted the WS cellular morphology to that seen in normal dermal fibroblasts. These data suggest that MK2 activity plays a substantial role in proliferation control in WS cells. CMPD16 was not as effective in cellular lifespan extension as SB203580, however, suggesting that, although MK2 is a downstream kinase involved in cell cycle arrest, other p38 targets may play a role. Alternatively, as CMPD16 is toxic to cell growth at levels just above those that extend lifespan, it is possible that the therapeutic window is too small. However, as CMPD16 does show significant effects in WS fibroblasts, this acts as proof-of-principle for the efforts to design and synthesise improved MK2 inhibitors. As MK2 is involved in inflammatory processes and inflammation plays a major role in WS phenotypes, these data suggest MK2 as a potential therapeutic target for the treatment of Werner syndrome.
Collapse
Affiliation(s)
- Terence Davis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | | | | | | |
Collapse
|
27
|
Macaulay R, Riddell NE, Griffiths SJ, Akbar AN, Henson SM. Differing HLA types influence inhibitory receptor signalling in CMV-specific CD8+ T cells. Hum Immunol 2012; 74:302-9. [PMID: 23220495 DOI: 10.1016/j.humimm.2012.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/26/2022]
Abstract
The dysregulated immune response to CMV constitutes a major force driving T cell immunosenescence and growing evidence suggests that it is not a benign virus in old age. We show here that the PD-1/L pathway defines a reversible defect in CMV specific CD8(+) T cell proliferative responses in both young and old individuals. More specifically, highly differentiated CD45RA(+)CD27(-) CMV-specific CD8(+) T cells exhibit a proliferative deficit compared their central and effector memory counterparts, which is reversed following PD-L blockade. However, we also report that HLA-B(∗)07/TPR specific CD8(+) T cells express higher levels of PD-1 than HLA-A(∗)02/NLV specific cells and HLA-A(∗)02 individuals show a higher proliferative response to PD-L blockade, than HLA-B(∗)07 individuals, which we postulate may be due to the differing functional avidities for these two CMV-specific CD8(+) T cells populations. Nevertheless data presented here demonstrate that CMV-specific CD8(+) T cells can be functionally enhanced by perturbation of the PD-1/L signalling pathway, whose manipulation may provide a therapeutic modality to combat age-associated immune decline.
Collapse
Affiliation(s)
- Richard Macaulay
- Division of Infection and Immunity, University College London, 5 University Street, London, WC1E 6JF, UK
| | | | | | | | | |
Collapse
|
28
|
Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, Macaulay R, Kipling D, Soares MVD, Battistini L, Akbar AN. Reversible Senescence in Human CD4+CD45RA+CD27− Memory T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2093-100. [DOI: 10.4049/jimmunol.1100978] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|