1
|
D'Onofrio G, Santangelo A, Riva A, Striano P. Genetic polymorphisms of drug-metabolizing enzymes in older and newer anti-seizure medications. Expert Opin Drug Metab Toxicol 2024; 20:407-410. [PMID: 38809019 DOI: 10.1080/17425255.2024.2362190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Affiliation(s)
- Gianluca D'Onofrio
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrea Santangelo
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology, Pediatric Department, AOUP Santa Chiara Hospital, Pisa, Italy
| | - Antonella Riva
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| |
Collapse
|
2
|
Almohaish S, Cook AM, Brophy GM, Rhoney DH. Personalized antiseizure medication therapy in critically ill adult patients. Pharmacotherapy 2023; 43:1166-1181. [PMID: 36999346 DOI: 10.1002/phar.2797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
Precision medicine has the potential to have a significant impact on both drug development and patient care. It is crucial to not only provide prompt effective antiseizure treatment for critically ill patients after seizures start but also have a proactive mindset and concentrate on epileptogenesis and the underlying cause of the seizures or seizure disorders. Critical illness presents different treatment issues compared with the ambulatory population, which makes it challenging to choose the best antiseizure medications and to administer them at the right time and at the right dose. Since there is a paucity of information available on antiseizure medication dosing in critically ill patients, therapeutic drug monitoring is a useful tool for defining each patient's personal therapeutic range and assisting clinicians in decision-making. Use of pharmacogenomic information relating to pharmacokinetics, hepatic metabolism, and seizure etiology may improve safety and efficacy by individualizing therapy. Studies evaluating the clinical implementation of pharmacogenomic information at the point-of-care and identification of biomarkers are also needed. These studies may make it possible to avoid adverse drug reactions, maximize drug efficacy, reduce drug-drug interactions, and optimize medications for each individual patient. This review will discuss the available literature and provide future insights on precision medicine use with antiseizure therapy in critically ill adult patients.
Collapse
Affiliation(s)
- Sulaiman Almohaish
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pharmacy Practice, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aaron M Cook
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Gretchen M Brophy
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Denise H Rhoney
- Division of Practice Advancement and Clinical Education, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Abstract
A woman in her 20s presented with rapidly progressive muscle weakness and a 1-month preceding history of fatigability, nausea and vomiting. She was found to have critical hypokalaemia (K+ 1.8 mmol/L), a prolonged corrected QT interval (581 ms) and a normal anion gap metabolic acidosis (pH 7.15) due to zonisamide-induced distal (type 1) renal tubular acidosis. She was admitted to the intensive care unit for potassium replacement and alkali therapy. Clinical and biochemical improvement ensued, and she was discharged after a 27-day inpatient stay.
Collapse
Affiliation(s)
- Thomas MacMahon
- Intensive Care Unit, Tallaght University Hospital, Dublin, Ireland
| | - Yvelynne P Kelly
- Intensive Care Unit, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Kocaaga A, Yimenicioglu S. Identification of Novel Gene Variants in Children With Drug-Resistant Epilepsy: Expanding the Genetic Spectrum. Pediatr Neurol 2023; 139:7-12. [PMID: 36493596 DOI: 10.1016/j.pediatrneurol.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Resistance to antiseizure drugs is an important problem in the treatment of individuals with epilepsy. Identifying the molecular etiology of drug-resistant epilepsy (DRE) is crucial for better management of epilepsy. Here, we explore the utility of whole exome sequencing (WES) in identifying causative gene variants in children with DRE. METHODS Forty-five children with DRE who underwent WES tests were included. Genetic examination of all patients included chromosomal analysis and clinical chromosomal microarray followed by WES. The identified variants by WES analysis were classified for pathogenicity based on the American College of Medical Genetics and Genomics guidelines and in silico protein prediction tools. RESULTS The overall diagnostic yield was 55.5% (25 of 45). A total of 26 variants spanning 22 genes were identified in 25 patients. Of note, only 19 of these genes were examined as novel. Ten patients (22.2%) had a pathogenic or likely pathogenic variant. There was a trend associated with a diagnostic genetic test result in girls compared with boys in DRE (P = 0.028). CONCLUSION Our findings expand the mutational spectrum of genes related to DRE. To form disease-specific treatment in children with DRE, the WES analysis should be included in the diagnostic algorithm because of its high diagnostic efficiency.
Collapse
Affiliation(s)
- Ayca Kocaaga
- Department of Medical Genetics, Eskisehir City Hospital, Eskişehir, Turkey.
| | - Sevgi Yimenicioglu
- Department of Pediatric Neurology, Eskisehir City Hospital, Eskişehir, Turkey
| |
Collapse
|
5
|
Oxidative-stress and long-term hepatotoxicity: comparative study in Upcyte human hepatocytes and hepaRG cells. Arch Toxicol 2022; 96:1021-1037. [PMID: 35156134 DOI: 10.1007/s00204-022-03236-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions and a major cause of drug development failure and withdrawal. Although different molecular mechanisms are implicated in DILI, enhanced ROS levels have been described as a major mechanism. Human-derived cell models are increasingly used in preclinical safety assessment because they provide quick and relatively inexpensive information in early stages of drug development. We have analyzed and compared the phenotype and functionality of two liver cell models (Upcyte human hepatocytes and HepaRG cells) to demonstrate their suitability for long-term hepatotoxicity assessments and mechanistic studies. The transcriptomic and functional analysis revealed the maintenance of phase I and phase II enzymes, and antioxidant enzymes along time in culture, although the differences found between both test systems underlie the differential sensitivity to hepatotoxins. The evaluation of several mechanisms of cell toxicity, including oxidative stress, by high-content screening, demonstrated that, by combining the stable phenotype of liver cells and repeated-dose exposure regimes to 12 test compounds at clinically relevant concentrations, both Upcyte hepatocytes and HepaRG offer suitable properties to be used in routine screening assays for toxicological assessments during drug preclinical testing.
Collapse
|
6
|
Vázquez M, Fagiolino P. The role of efflux transporters and metabolizing enzymes in brain and peripheral organs to explain drug-resistant epilepsy. Epilepsia Open 2021; 7 Suppl 1:S47-S58. [PMID: 34560816 PMCID: PMC9340310 DOI: 10.1002/epi4.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/08/2022] Open
Abstract
Drug‐resistant epilepsy has been explained by different mechanisms. The most accepted one involves overexpression of multidrug transporters proteins at the blood brain barrier and brain metabolizing enzymes. This hypothesis is one of the main pharmacokinetic reasons that lead to the lack of response of some antiseizure drug substrates of these transporters and enzymes due to their limited entrance into the brain and limited stay at the sites of actions. Although uncontrolled seizures can be the cause of the overexpression, some antiseizure medications themselves can cause such overexpression leading to treatment failure and thus refractoriness. However, it has to be taken into account that the inductive effect of some drugs such as carbamazepine or phenytoin not only impacts on the brain but also on the rest of the body with different intensity, influencing the amount of drug available for the central nervous system. Such induction is not only local drug concentration but also time dependent. In the case of valproic acid, the deficient disposition of ammonia due to a malfunction of the urea cycle, which would have its origin in an intrinsic deficiency of L‐carnitine levels in the patient or by its depletion caused by the action of this antiseizure drug, could lead to drug‐resistant epilepsy. Many efforts have been made to change this situation. In order to name some, the administration of once‐daily dosing of phenytoin or the coadministration of carnitine with valproic acid would be preferable to avoid iatrogenic refractoriness. Another could be the use of an adjuvant drug that down‐regulates the expression of transporters. In this case, the use of cannabidiol with antiseizure properties itself and able to diminish the overexpression of these transporters in the brain could be a novel therapy in order to allow penetration of other antiseizure medications into the brain.
Collapse
Affiliation(s)
- Marta Vázquez
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Pietro Fagiolino
- Pharmaceutical Sciences Department, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Zampatti S, Fabrizio C, Ragazzo M, Campoli G, Caputo V, Strafella C, Pellicano C, Cascella R, Spalletta G, Petrosini L, Caltagirone C, Termine A, Giardina E. Precision Medicine into Clinical Practice: A Web-Based Tool Enables Real-Time Pharmacogenetic Assessment of Tailored Treatments in Psychiatric Disorders. J Pers Med 2021; 11:jpm11090851. [PMID: 34575628 PMCID: PMC8471120 DOI: 10.3390/jpm11090851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The management of neuropsychiatric disorders involves different pharmacological treatments. In order to perform efficacious drug treatments, the metabolism of CYP genes can help to foresee potential drug–drug interactions. The NeuroPGx software is an open-source web-based tool for genotype/diplotype/phenotype interpretation for neuropharmacogenomic purposes. The software provides information about: (i) the genotypes of evaluated SNPs (single nucleotide polymorphisms); (ii) the main diplotypes in CYP genes and corresponding metabolization phenotypes; (iii) the list of neuropsychiatric drugs with recommended dosage adjustment (according to CPIC and DPWG guidelines); (iv) the list of possible (rare) diplotypes and corresponding metabolization phenotypes. The combined application of NeuroPGx software to the OpenArray technology results in an easy, quick, and highly automated device ready to be used in routine clinical practice.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Carlo Fabrizio
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Michele Ragazzo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Giulia Campoli
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Valerio Caputo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Clelia Pellicano
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.P.); (G.S.)
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (C.P.); (G.S.)
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Andrea Termine
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.Z.); (C.F.); (G.C.); (C.S.); (R.C.); (A.T.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy; (M.R.); (V.C.)
- Correspondence:
| |
Collapse
|
8
|
Ahmed AF, Sukasem C, Sabbah MA, Musa NF, Mohamed Noor DA, Daud NAA. Genetic Determinants in HLA and Cytochrome P450 Genes in the Risk of Aromatic Antiepileptic-Induced Severe Cutaneous Adverse Reactions. J Pers Med 2021; 11:383. [PMID: 34067134 PMCID: PMC8150699 DOI: 10.3390/jpm11050383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reaction (ADR) is a pressing health problem, and one of the main reasons for treatment failure with antiepileptic drugs. This has become apparent in the event of severe cutaneous adverse reactions (SCARs), which can be life-threatening. In this review, four hypotheses were identified to describe how the immune system is triggered in the development of SCARs, which predominantly involve the human leukocyte antigen (HLA) proteins. Several genetic variations in HLA genes have been shown to be strongly associated with the susceptibility to developing SCARs when prescribed carbamazepine or phenytoin. These genetic variations were also shown to be prevalent in certain populations. Apart from the HLA genes, other genes proposed to affect the risk of SCARs are genes encoding for CYP450 drug-metabolising enzymes, which are involved in the pharmacokinetics of offending drugs. Genetic variants in CYP2C9 and CYPC19 enzymes were also suggested to modulate the risk of SCARs in some populations. This review summarizes the literature on the manifestation and aetiology of antiepileptic-induced SCARs, updates on pharmacogenetic markers associated with this reaction and the implementation of pre-emptive testing as a preventive strategy for SCARs.
Collapse
Affiliation(s)
- Ali Fadhel Ahmed
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia or (A.F.A.); (D.A.M.N.)
| | - Chonlaphat Sukasem
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction (THAI-SCAR) Research Group, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Research and Development Laboratory, Bumrungrad International Hospital, Bangkok 10110, Thailand
| | - Majeed Arsheed Sabbah
- Forensic DNA for Research and Training Centre, Alnahrain University, Baghdad 64074, Iraq;
| | - Nur Fadhlina Musa
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Dzul Azri Mohamed Noor
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia or (A.F.A.); (D.A.M.N.)
| | - Nur Aizati Athirah Daud
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia or (A.F.A.); (D.A.M.N.)
- Human Genome Center, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
9
|
Elfaki I, Mir R, Abu-Duhier FM, Jha CK, Ahmad Al-Alawy AI, Babakr AT, Habib SAEH. Analysis of the Potential Association of Drug-Metabolizing Enzymes CYP2C9*3 and CYP2C19*3 Gene Variations With Type 2 Diabetes: A Case-Control Study. Curr Drug Metab 2020; 21:1152-1160. [PMID: 33115391 DOI: 10.2174/1389200221999201027200931] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cytochrome P450s (CYPs) are drug-metabolizing enzymes catalyzing the metabolism of about 75% of drug in clinical use. CYP2C9 represents 20% CYP proteins in liver cells and is a crucial member of CYPs superfamily. CYP2C19 metabolizes very important drugs such as antiulcer drug omeprazole, the antiplatelet drug clopidogrel and anticonvulsant mephenytoin. Single nucleotide polymorphisms (SNPs) of CYP genes have been associated with unexpected drug reactions and diseases in different populations. OBJECTIVE We examined the associations of CYP2C9*3 (rs1057910) and CYP2C19*3 (rs4986893) with T2D in Saudi population. METHODS We used the allele-specific PCR (AS-PCR) and DNA sequencing in 111 cases and 104 controls for rs1057910, and in 119 cases and 110 controls for rs4986893. RESULTS It is indicated that the genotype distribution of rs1057910 in cases and controls were not significantly different (P=0.0001). The genotypes of rs1057910 were not associated with type 2 diabetes (T2D) (P>0.05). Whereas the genotype distribution of rs4986893 in cases and controls was significantly different (P=0.049). The AA genotype of rs4986893 may be associated in increased risk to T2D with OR=17.25 (2.06-143.8), RR=6.14(0.96-39.20), P=0.008. CONCLUSION The CYP2C9*3 (rs1057910) may not be associated with T2D, while CYP2C19*3 (rs4986893) is probably associated with T2D. These findings need to be validated in follow-up studies with larger sample sizes and different populations.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Prince Fahd Ben Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisel Mohammed Abu-Duhier
- Prince Fahd Ben Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
10
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Pre-Clinical Assessment of the Nose-to-Brain Delivery of Zonisamide After Intranasal Administration. Pharm Res 2020; 37:74. [PMID: 32215749 DOI: 10.1007/s11095-020-02786-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Zonisamide clinical indications are expanding beyond the classic treatment of epileptic seizures to Parkinson's disease and other neurodegenerative diseases. However, the systemic safety profile of zonisamide may compromise its use as a first-line drug in any clinical condition. Since zonisamide is marketed as oral formulations, the present study aimed at exploring the potential of the intranasal route to centrally administer zonisamide, evaluating the systemic bioavailability of zonisamide and comparing its brain, lung and kidney pharmacokinetics after intranasal, oral and intravenous administrations. METHODS In vitro cell studies demonstrated that zonisamide and proposed thermoreversible gels did not affect the viability of RPMI 2650 or Calu-3 cells. Thereafter, male CD-1 mice were randomly administered with zonisamide by oral (80 mg/kg), intranasal or intravenous (16.7 mg/kg) route. At predefined time points, animals were sacrificed and plasma and tissues were collected to quantify zonisamide and describe its pharmacokinetics. RESULTS Intranasal route revealed a low absolute bioavailability (54.95%) but the highest value of the ratio between the area under the curve (AUC) between brain and plasma, suggesting lower systemic adverse events and non-inferior effects in central nervous system comparatively to intravenous and oral routes. Furthermore, drug targeting efficiency and direct transport percentage into the brain were 149.54% and 33.13%, respectively, corroborating that a significant fraction of zonisamide suffers direct nose-to-brain transport. Lung and kidney exposures obtained after intranasal administration were lower than those observed after intravenous injection. CONCLUSIONS This pre-clinical investigation demonstrates a direct nose-to-brain delivery of zonisamide, which may be a promising strategy for the treatment of central diseases.
Collapse
|
12
|
Esposito M, Lagorio I, Peroni D, Bonuccelli A, Orsini A, Striano P. Genomic sequencing in severe epilepsy: a step closer to precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1732203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mariagrazia Esposito
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Ilaria Lagorio
- Department of Neurology, University of Siena, Siena, Italy
| | - Diego Peroni
- Pediatric Department, “A.O.U. Pisana”, University Hospital of Pisa, Pisa, Italy
| | - Alice Bonuccelli
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Alessandro Orsini
- Pediatric Neurology Unit, “A.O.U. Pisana” University Hospital of Pisa, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genova, Italy
- Department Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, Genova, Italy
| |
Collapse
|
13
|
Naimo GD, Guarnaccia M, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. A Systems Biology Approach for Personalized Medicine in Refractory Epilepsy. Int J Mol Sci 2019; 20:E3717. [PMID: 31366017 PMCID: PMC6695675 DOI: 10.3390/ijms20153717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023] Open
Abstract
Epilepsy refers to a common chronic neurological disorder that affects all age groups. Unfortunately, antiepileptic drugs are ineffective in about one-third of patients. The complex interindividual variability influences the response to drug treatment rendering the therapeutic failure one of the most relevant problems in clinical practice also for increased hospitalizations and healthcare costs. Recent advances in the genetics and neurobiology of epilepsies are laying the groundwork for a new personalized medicine, focused on the reversal or avoidance of the pathophysiological effects of specific gene mutations. This could lead to a significant improvement in the efficacy and safety of treatments for epilepsy, targeting the biological mechanisms responsible for epilepsy in each individual. In this review article, we focus on the mechanism of the epilepsy pharmacoresistance and highlight the use of a systems biology approach for personalized medicine in refractory epilepsy.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
14
|
Tolosa L, Jiménez N, Pelechá M, Castell JV, Gómez-Lechón MJ, Donato MT. Long-term and mechanistic evaluation of drug-induced liver injury in Upcyte human hepatocytes. Arch Toxicol 2018; 93:519-532. [PMID: 30426164 DOI: 10.1007/s00204-018-2349-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022]
Abstract
Drug-induced liver injury (DILI) constitutes one of the most frequent reasons of restricted-use warnings as well as withdrawals of drugs in postmarketing and poses an important concern for the pharmaceutical industry. The current hepatic in vivo and in vitro models for DILI detection have shown clear limitations, mainly for studies of long-term hepatotoxicity. For this reason, we here evaluated the potential of using Upcytes human hepatocytes (UHH) for repeated-dose long-term exposure to drugs. The UHH were incubated with 15 toxic and non-toxic compounds for up to 21 days using a repeated-dose approach, and, in addition to conventional examination of effects on viability, the mechanisms implicated in cell toxicity were also assessed by means of high-content screening. The UHH maintained the expression and activity levels of drug-metabolizing enzymes for up to 21 days of culture and became more sensitive to the toxic compounds after extended exposures, showing inter-donor differences which would reflect variability among the population. The assay also allowed to detect the main mechanisms implicated in the toxicity of each drug as well as identifying special susceptibilities depending on the donor. UHH can be used for a long-term repeated detection of DILI at clinically relevant concentrations and also offers key mechanistic features of drug-induced hepatotoxicity. This system is therefore a promising tool in preclinical testing of human relevance that could help to reduce and/or replace animal testing for drug adverse effects.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Jiménez
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - María Pelechá
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José V Castell
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - Mª José Gómez-Lechón
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Torre A. Instituto Investigación Sanitaria La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain.
| |
Collapse
|
15
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Pharmacogenetics of adverse reactions to antiepileptic drugs. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2015.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Chbili C, Fathallah N, Laouani A, Nouira M, Hassine A, Ben Amor S, Ben Ammou S, Ben Salem C, Saguem S. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet 2017; 30:16-21. [PMID: 27276192 DOI: 10.3109/01677063.2016.1155571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate the impact of polymorphisms in the EPHX1 (c.416A > G, c.337T > C) and CYP3A4*22 genes involved in carbamazepine (CBZ) metabolism and pharmacoresistance among 118 Tunisian patients with epilepsy under maintenance dose of CBZ. These genetic polymorphisms were analyzed by PCR-RFLP. Associations between plasma CBZ concentration, CBZ-E concentration, maintenance doses and metabolic ratio (CBZ-E:CBZ, CBZ-D:CBZ-E) were analyzed with each polymorphism. Both variants of EPHX1 c.416A > G and c.337T > C are significantly associated with higher metabolic ratio CBZ-E:CBZ and seem to decrease the activity of the epoxide hydrolase. The CYP3A4*22 variant allele is significantly associated with lower CBZ-D:CBZ-E ratio and seems also to be associated with less activity of the cytochrome. Our data suggest that certain polymorphisms of metabolizing enzyme genes could influence inter-individual variability of CBZ metabolism.
Collapse
Affiliation(s)
- Chahra Chbili
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| | - Neila Fathallah
- b Department of Pharmacovigilance, Faculty of Medicine of Sousse , Sousse University , Sousse , Tunisia
| | - Aicha Laouani
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| | - Manel Nouira
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| | - Anis Hassine
- c Neurology Department , Central Hospital University (CHU), Sousse University , Sousse , Tunisia
| | - Sana Ben Amor
- c Neurology Department , Central Hospital University (CHU), Sousse University , Sousse , Tunisia
| | - Sofiene Ben Ammou
- c Neurology Department , Central Hospital University (CHU), Sousse University , Sousse , Tunisia
| | - Chaker Ben Salem
- b Department of Pharmacovigilance, Faculty of Medicine of Sousse , Sousse University , Sousse , Tunisia
| | - Saad Saguem
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| |
Collapse
|
17
|
Dagenais R, Wilby KJ, Elewa H, Ensom MHH. Impact of Genetic Polymorphisms on Phenytoin Pharmacokinetics and Clinical Outcomes in the Middle East and North Africa Region. Drugs R D 2017; 17:341-361. [PMID: 28748348 PMCID: PMC5629135 DOI: 10.1007/s40268-017-0195-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic polymorphisms are known to influence outcomes with phenytoin yet effects in the Middle East and North Africa region are poorly understood. OBJECTIVES The objective of this systematic review was to evaluate the impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in populations originating from the Middle East and North Africa region, and to characterize genotypic and allelic frequencies within the region for genetic polymorphisms assessed. METHODS MEDLINE (1946-3 May, 2017), EMBASE (1974-3 May, 2017), Pharmacogenomics Knowledge Base, and Public Health Genomics Knowledge Base online databases were searched. Studies were included if genotyping and analyses of phenytoin pharmacokinetics were performed in patients of the Middle East and North Africa region. Study quality was assessed using a National Institutes of Health assessment tool. A secondary search identified studies reporting genotypic and allelic frequencies of assessed genetic polymorphisms within the Middle East and North Africa region. RESULTS Five studies met the inclusion criteria. CYP2C9, CYP2C19, and multidrug resistance protein 1 C3435T variants were evaluated. While CYP2C9*2 and *3 variants significantly reduced phenytoin metabolism, the impacts of CYP2C19*2 and *3 variants were unclear. The multidrug resistance protein 1 CC genotype was associated with drug-resistant epilepsy, but reported impacts on phenytoin pharmacokinetics were conflicting. Appreciable variability in minor allele frequencies existed both between and within countries of the Middle East and North Africa region. CONCLUSIONS CYP2C9 decrease-of-function alleles altered phenytoin pharmacokinetics in patients originating from the Middle East and North Africa region. The impacts of CYP2C19 and multidrug resistance protein 1 C3435T variants on phenytoin pharmacokinetic and clinical outcomes are unclear and require further investigation. Future research should focus on the clinical outcomes associated with phenytoin therapy. PROSPERO 2017: CRD42017057850.
Collapse
Affiliation(s)
- Renée Dagenais
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Kyle John Wilby
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hazem Elewa
- College of Pharmacy, Qatar University, PO Box 2713, Doha, Qatar
| | - Mary H H Ensom
- Faculty of Pharmaceutical Sciences, Pharmaceutical Sciences Building, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Children's and Women's Health Centre of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Garza-Flores A, Hawley P, Picker J, Tannebring E, Deardorff MA, Lin AE. Response to: Toriello et al., “Update on the Toriello-Carey Syndrome.” Further delineation of a young woman with deletion 1q42.12-q42.2. Am J Med Genet A 2017; 173:1988-1991. [DOI: 10.1002/ajmg.a.38203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Alexandra Garza-Flores
- Harvard Medical School Genetics Training Program; Boston Massachusetts
- Medical Genetics Unit, Department of Pediatrics; Massachusetts General Hospital; Boston Massachusetts
| | - Pamela Hawley
- Division of Genetics and Genomics, Department of Genetics; Boston Children's Hospital; Boston Massachusetts
| | - Jonathan Picker
- Division of Genetics and Genomics, Department of Genetics; Boston Children's Hospital; Boston Massachusetts
| | - Elizabeth Tannebring
- Division of Complex Care Services, Department of Pediatrics; Boston Children's Hospital; Boston Massachusetts
| | - Matthew A. Deardorff
- Division of Genetics, Department of Pediatrics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Angela E. Lin
- Medical Genetics Unit, Department of Pediatrics; Massachusetts General Hospital; Boston Massachusetts
| |
Collapse
|
19
|
Population Pharmacokinetics of Valproic Acid in Patients with Mania: Implication for Individualized Dosing Regimens. Clin Ther 2017; 39:1171-1181. [DOI: 10.1016/j.clinthera.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
|
20
|
Verrotti A, Piccorossi A, Lasorella S, Tambucci R. Pharmacotherapy in pediatric epilepsy: rational drug and dose selection. Expert Opin Drug Metab Toxicol 2016; 12:1393-1396. [DOI: 10.1080/17425255.2016.1246536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Alberto Verrotti
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| | - Alessandra Piccorossi
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| | - Stefania Lasorella
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| | - Renato Tambucci
- Department of Pediatrics, University of L’Aquila, San Salvatore Hospital, L’Aquila, Italy
| |
Collapse
|
21
|
Fricke-Galindo I, Jung-Cook H, LLerena A, López-López M. Pharmacogenetics of adverse reactions to antiepileptic drugs. Neurologia 2015; 33:165-176. [PMID: 25976948 DOI: 10.1016/j.nrl.2015.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/30/2014] [Accepted: 03/04/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Adverse drug reactions (ADRs) are a major public health concern and a leading cause of morbidity and mortality in the world. In the case of antiepileptic drugs (AEDs), ADRs constitute a barrier to successful treatment since they decrease treatment adherence and impact patients' quality of life of patients. Pharmacogenetics aims to identify genetic polymorphisms associated with drug safety. This article presents a review of genes coding for drug metabolising enzymes and drug transporters, and HLA system genes that have been linked to AED-induced ADRs. DEVELOPMENT To date, several genetic variations associated with drug safety have been reported: CYP2C9*2 and *3 alleles, which code for enzymes with decreased activity, have been linked to phenytoin (PHT)-induced neurotoxicity; GSTM1 null alleles with hepatotoxicity induced by carbamazepine (CBZ) and valproic acid (VPA); EPHX1 polymorphisms with teratogenesis; ABCC2 genetic variations with CBZ- and VPA-induced neurological ADRs; and HLA alleles (e.g. HLA-B*15:02, -A*31:01, -B*15:11, -C*08:01) with cutaneous ADRs. CONCLUSIONS Published findings show that there are ADRs with a pharmacogenetic basis and a high interethnic variability, which indicates a need for future studies in different populations to gather more useful results for larger number of patients. The search for biomarkers that would allow predicting ADRs to AEDs could improve pharmacotherapy for epilepsy.
Collapse
Affiliation(s)
- I Fricke-Galindo
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, México D.F. , México
| | - H Jung-Cook
- Departamento de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Departamento de Farmacia, Universidad Nacional Autónoma de México, Tlalpan, México D.F., México
| | - A LLerena
- CICAB Centro de Investigación Clínica, Complejo Hospitalario Universitario y Facultad de Medicina, Universidad de Extremadura, Servicio Extremeño de Salud, Badajoz, España
| | - M López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Coyoacán, México D.F., México.
| |
Collapse
|
22
|
Caruso A, Bellia C, Pivetti A, Agnello L, Bazza F, Scazzone C, Bivona G, Lo Sasso B, Ciaccio M. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med 2014; 7:117-20. [PMID: 24817818 PMCID: PMC4012346 DOI: 10.2147/pgpm.s55548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of two genetic polymorphisms in the coding regions (exon 3 and exon 4) of the EPHX1 gene, ie, 337T>C and 416A>G, respectively, on the metabolism of carbamazepine (CBZ) 10,11-epoxide (the active metabolite of CBZ) by evaluating the variation in serum CBZ 10,11-epoxide levels 4 hours after administration of the drug. Moreover, we reported the genotype frequencies of the CYP3A4*22 (rs 35599367, C>T) variant and its influence on the metabolism of CBZ. METHODS The analysis was performed in 50 patients receiving CBZ as monotherapy. DNA was extracted from leukocytes using a commercially available kit. Serum CBZ 10,11-epoxide levels were measured by high-performance liquid chromatography. Allelic discrimination was performed using polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis of the difference in mean values for CBZ 10,11-epoxide levels according to genotype was performed using the Student's t-test with Statistical Package for the Social Sciences version 13 software. RESULTS Fourteen percent of the study group were CC, 42% were CT, and 44% were TT for the EPHX1 337T>C variant. No GG homozygote was identified for the EPHX1 416A>G variant; 64% were AA and 36% were AG. When we compared serum CBZ 10,11-epoxide levels 4 hours after drug administration, we found no statistically significant difference between the 337 CC, CT, and TT genotypes. Similarly, no difference in serum CBZ 10,11-epoxide levels was found between 416A>G AA and AG. Genotype frequencies for the CYP3A4*22 (rs 35599367 C>T) allelic variant were 94% for CC and 6% for CT, with no statistically significant difference in serum CBZ 10,11-epoxide levels between these genotypes 4 hours after administration of the drug (2.6±1.3 μg/μL and 2.5±1.2 μg/μL, respectively). CONCLUSION Although there is some evidence of involvement of these polymorphisms in enzyme activity in vitro, we found no interference with CBZ metabolism in vivo.
Collapse
Affiliation(s)
- Antonietta Caruso
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Chiara Bellia
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Alessia Pivetti
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Luisa Agnello
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Federica Bazza
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Concetta Scazzone
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Giulia Bivona
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Castellan AC, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, Nony P. Quantitative Prediction of the Impact of Drug Interactions and Genetic Polymorphisms on Cytochrome P450 2C9 Substrate Exposure. Clin Pharmacokinet 2013; 52:199-209. [DOI: 10.1007/s40262-013-0031-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
López M, Dorado P, Monroy N, Alonso ME, Jung-Cook H, Machín E, Peñas-Lledó E, Llerena A. Pharmacogenetics of the antiepileptic drugs phenytoin and lamotrigine. ACTA ACUST UNITED AC 2012; 26:5-12. [PMID: 21557672 DOI: 10.1515/dmdi.2011.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Patients treated with antiepileptic drugs can exhibit large interindividual variability in clinical efficacy or adverse effects. This could be partially due to genetic variants in genes coding for proteins that function as drug metabolizing enzymes, drug transporters or drug targets. The purpose of this article is to provide an overview of the current knowledge on the pharmacogenetics of two commonly prescribed antiepileptic drugs with similar mechanisms of action; phenytoin (PHT) and lamotrigine (LTG). These two drugs have been selected in order to model the pharmacogenetics of Phase I and Phase II metabolism for PHT and LTG, respectively. In light of the present evidence, patients treated with PHT could benefit from CYP2C9 and CYP2C19 genotyping/phenotyping. For those under treatment with LTG, UGT1A4 and UGT2B7 genotyping might be of clinical use and could contribute to the interindividual variability in LTG concentration to dose ratio in epileptic patients.
Collapse
Affiliation(s)
- Marisol López
- Department of Biological Systems, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|