1
|
Analysis of Sugars in Honey Samples by Capillary Zone Electrophoresis Using Fluorescence Detection. SEPARATIONS 2023. [DOI: 10.3390/separations10030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The applicability of capillary electrophoresis (CE) with light-emitting diode-induced fluorescence detection (LEDIF) for the separation of sugars in honey samples was studied. An amount of 25 mM ammonium acetate (pH 4.5) with 0.3% polyethylene oxide (PEO) was found to be optimal for the efficient separation of carbohydrates. 8-aminopyrene-1,3,6-trisulfonic acid (APTS) was used for the labeling of the carbohydrate standards and honey sugars for fluorescence detection. The optimized method was applied in the quantitative analysis of fructose and glucose by direct injection of honey samples. Apart from the labeling reaction, no other sample preparation was performed. The mean values of the fructose/glucose ratio for phacelia honey, acacia honey and honeydew honey were 0.86, 1.61 and 1.42, respectively. The proposed method provides high separation efficiency and sensitive detection within a short analysis time. Apart from the labeling reaction, it enables the injection of honeys without sample pretreatment. This is the first time that fluorescence detection has been applied for the CE analysis of sugars in honeys.
Collapse
|
2
|
Sran KS, Sharma Y, Kaur T, Rao A. Post-translational modifications and glycoprofiling of palivizumab by UHPLC–RPLC/HILIC and mass spectrometry. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:95-108. [PMID: 35572846 PMCID: PMC9084543 DOI: 10.1007/s42485-022-00086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Viral infections are progressively becoming a global health burden, as witnessed in the ongoing COVID-19 pandemic. Respiratory Syncytial Virus (RSV) is another highly contagious negative-sense RNA virus that causes lower respiratory tract infections and high mortality in infants. Palivizumab (Synagis®) is the only humanized monoclonal antibody (mAb) approved by the FDA against RSV. The virus neutralization efficacy often depends on the nature and abundance of the glycoforms in therapeutic mAbs. Therefore, a thorough estimation of their PTM profile, especially glycosylation, is relevant. Here, we describe the intact and released glycan analysis of palivizumab (Synagis®) using HILIC chromatography and mass spectrometry. We detected five glycoforms (Man5/G0FB, G0F/G1F, G1F/G1F, G0FB/G0FB, and G2F/G2F) in deconvoluted MS spectra of intact glycosylated palivizumab. The mapping of the peptide and glycopeptides using LC–ESI–MS led to the detection of associated PTMs and the direct identification of a glycopeptide, GlcNAc3Man2. EEQYNSTYR, derived from the heavy chain of palivizumab.Release glycan analysis using UHPLC–HILIC revealed a typical glycan profile consisting of major glycans, G0F (33.94%), G1F (35.50%), G2F (17.24%) also reported previously and minor G1F’ (5.81%), Man5 (3.96%) and G0FB (2.26%) forms with the superior resolution of isomeric G1F/G1F’. Next, we provide the first experimental evidence of Neu5Gc in the commercial palivizumab formulation using DMB labelling. The estimated monosaccharide composition was consistent with previous studies. The findings of the study highlight the efficiency of the release glycan method in providing a correct measure of the total palivizumab glycan pool compared to the intact glycoprotein/glycopeptide approach. The UHPLC–RPLC/HILIC and MS combinations provide a more comprehensive glycoprofile assessment due to the parallel use of fluorescent labels for the analysis of the release of N-glycan, sialic acid, and monosaccharide composition. This approach is suitable for quick quality testing and market surveillance of therapeutic mAbs. Alongside a well-perceived need for cost-effective immunoprophylaxis and the ongoing fast-paced development of next-generation variants of palivizumab, such as MEDI8897, the study reiterates glycosylation as a critical parameter that needs monitoring for drug characterization and quality control.
Collapse
Affiliation(s)
| | - Yogita Sharma
- CSIR Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Tejinder Kaur
- CSIR Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Alka Rao
- CSIR Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
Han M, Smith R, Rock DA. Capillary Electrophoresis-Mass Spectrometry (CE-MS) by Sheath-Flow Nanospray Interface and Its Use in Biopharmaceutical Applications. Methods Mol Biol 2022; 2531:15-47. [PMID: 35941476 DOI: 10.1007/978-1-0716-2493-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both capillary electrophoresis (CE) and mass spectrometry (MS) technologies are powerful analytical tools that have been used extensively in the characterization of biologics in the biopharmaceutical industry. The direct coupling of CE with MS is an attractive approach, in that the high separation capability of CE and the ultrasensitive detection and accurate identification performance of MS can be combined to provide a powerful system for the analysis of complex analytes. In this chapter, we discuss the detailed procedure of carrying out CE-MS analysis using a nano sheath-flow interface and its applications including intact mass analysis of monoclonal antibodies and fusion proteins, and a biotransformation study of two Fc-FGF21 molecules in a single-dose pharmacokinetic mice study. Optimization processes, including the finetuning of CE conditions and MS parameters, are illustrated in this chapter, with focuses on method robustness and assay reproducibility.
Collapse
Affiliation(s)
- Mei Han
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA.
| | - Richard Smith
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
4
|
Kaya SI, Cetinkaya A, Caglayan MG, Ozkan SA. Recent biopharmaceutical applications of capillary electrophoresis methods on recombinant DNA technology-based products. Electrophoresis 2021; 43:1035-1049. [PMID: 34529858 DOI: 10.1002/elps.202100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 11/11/2022]
Abstract
Biopharmaceuticals (recombinant technology-based products, vaccines, whole blood and blood components, gene therapy, cells, tissues, etc.,) are described as biological medical products produced from various living sources such as human, microbial, animal, and so on by manufacturing, extraction, or semi-synthesis. They are complex molecules having high molecular weights. For their safety and efficacy, their structural, clinical, physicochemical, and chemical features must be carefully controlled, and they must be well characterized by analytical techniques before the approval of the final product. Capillary electrophoresis (CE) having versatile modes can provide valuable safety and efficacy information, such as amino acid sequence, size variants (low and high molecular weight variants), charged variants (acidic and basic impurities), aggregates, N-linked glycosylation, and O-linked glycosylation. There are numerous applications of CE in the literature. In this review, the most significant and recent studies on the analysis of recombinant DNA technology-based products using different CE modes in the last ten years have been overviewed. It was seen that the researches mostly focus on the analysis of mAbs and IgG. In addition, in recent years, researchers have started to prefer CE combined mass spectrometry (MS) techniques to provide a more detailed characterization for protein and peptide fragments.
Collapse
Affiliation(s)
- S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Ahmet Cetinkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Mehmet G Caglayan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
van der Burg D, Josefsson L, Mikkonen S, Chotteau V, Emmer Å, Wätzig H, Sänger-van de Griend CE. Method development for mono- and disaccharides monitoring in cell culture medium by capillary and microchip electrophoresis. Electrophoresis 2021; 43:922-929. [PMID: 34510488 DOI: 10.1002/elps.202100213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
The rapidly growing, competitive biopharmaceutical market requires tight bioprocess monitoring. An integrated, automated platform for the routine online/at-line monitoring of key factors in the cell culture medium could greatly improve process monitoring. Mono- and disaccharides, as the main energy and carbon source, are one of these key factors. A CE-LIF method was developed for the analysis of several mono- and disaccharides, considering requirements and restrictions for analysis in an integrated, automated monitoring platform, such as the possibility for miniaturization to microchip electrophoresis. Analysis was performed after fluorescent derivatization with 8-aminopyrene-1,3,6-trisulfonic acid. The derivatisation reaction and the separation BGE were optimized using design of experiments. The developed method is applicable to the complex matrix of cell culture medium and proved transferable to microchip electrophoresis.
Collapse
Affiliation(s)
- Debbie van der Burg
- Kantisto BV, Baarn, The Netherlands.,Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Leila Josefsson
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Saara Mikkonen
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Véronique Chotteau
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Emmer
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Cari E Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Akram MS, Pery N, Butler L, Shafiq MI, Batool N, Rehman MFU, Grahame-Dunn LG, Yetisen AK. Challenges for biosimilars: focus on rheumatoid arthritis. Crit Rev Biotechnol 2020; 41:121-153. [PMID: 33040628 DOI: 10.1080/07388551.2020.1830746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Healthcare systems worldwide are struggling to find ways to fund the cost of innovative treatments such as gene therapies, regenerative medicine, and monoclonal antibodies (mAbs). As the world's best known mAbs are close to facing patent expirations, the biosimilars market is poised to grow with the hope of bringing prices down for cancer treatment and autoimmune disorders, however, this has yet to be realized. The development costs of biosimilars are significantly higher than their generic equivalents due to therapeutic equivalence trials and higher manufacturing costs. It is imperative that academics and relevant companies understand the costs and stages associated with biologics processing. This article brings these costs to the forefront with a focus on biosimilars being developed for Rheumatoid Arthritis (RA). mAbs have remarkably changed the treatment landscape, establishing their superior efficacy over traditional small chemicals. Five blockbuster TNFα mAbs, considered as first line biologics against RA, are either at the end of their patent life or have already expired and manufacturers are seeking to capture a significant portion of that market. Although in principle, market-share should be available, withstanding that the challenges regarding the compliance and regulations are being resolved, particularly with regards to variation in the glycosylation patterns and challenges associated with manufacturing. Glycan variants can significantly affect the quality attributes requiring characterization throughout production. Successful penetration of biologics can drive down prices and this will be a welcome change for patients and the healthcare providers. Herein we review the biologic TNFα inhibitors, which are on the market, in development, and the challenges being faced by biosimilar manufacturers.
Collapse
Affiliation(s)
- Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,National Horizons Centre, Teesside University, Darlington, UK
| | - Neelam Pery
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Lucy Butler
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,National Horizons Centre, Teesside University, Darlington, UK
| | | | - Nayab Batool
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | | | | | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Kruse T, Kampmann M, Rüddel I, Greller G. An alternative downstream process based on aqueous two-phase extraction for the purification of monoclonal antibodies. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Hinkle JD, D'Ippolito RA, Panepinto MC, Wang WH, Bai DL, Shabanowitz J, Hunt DF. Unambiguous Sequence Characterization of a Monoclonal Antibody in a Single Analysis Using a Nonspecific Immobilized Enzyme Reactor. Anal Chem 2019; 91:13547-13554. [PMID: 31584792 DOI: 10.1021/acs.analchem.9b02666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate sequence characterization is essential for the development of therapeutic antibodies by the pharmaceutical industry. Presented here is a methodology to obtain comprehensive sequence analysis of a monoclonal antibody. An enzyme reactor of immobilized Aspergillopepsin I, a highly stable nonspecific protease, was used to cleave reduced antibody subunits into a peptide profile ranging from 1 to 20 kDa. Utilizing the Thermo Orbitrap Fusion's unique instrument architecture combined with state-of-the-art instrument control software allowed for dynamic instrument methods that optimally characterize eluting peptides based on their size and charge density. Using a data-dependent instrument method, both collisional dissociation and electron transfer dissociation were used to fragment the appropriate charge state of analyte peptides. The instrument layout also allowed for scans to be taken in parallel using both the ion trap and Orbitrap concurrently, thus allowing larger peptides to be analyzed in high resolution using the Orbitrap while simultaneously analyzing tryptic-like peptides using the ion trap. We harnessed these capabilities to develop a custom method to optimally fragment the eluting peptides based on their mass and charge density. Using this approach, we obtained 100% sequence coverage of the total antibody in a single chromatographic analysis, enabling unambiguous sequence assignment of all residues.
Collapse
Affiliation(s)
- Joshua D Hinkle
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Robert A D'Ippolito
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Maria C Panepinto
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Wei-Han Wang
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Dina L Bai
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Jeffrey Shabanowitz
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| | - Donald F Hunt
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States.,Department of Pathology , University of Virginia , Charlottesville , Virginia 22908 , United States
| |
Collapse
|
9
|
Peng J, Patil SM, Keire DA, Chen K. Chemical Structure and Composition of Major Glycans Covalently Linked to Therapeutic Monoclonal Antibodies by Middle-Down Nuclear Magnetic Resonance. Anal Chem 2018; 90:11016-11024. [PMID: 30102512 PMCID: PMC7040853 DOI: 10.1021/acs.analchem.8b02637] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycosylation of monoclonal antibodies (mAbs) is a critical quality attribute that can impact mAb drug efficacy and safety. The mAb glycans are inherently heterogeneous in chemical structure and composition of monosaccharides. The established fluorescence or mass-spectrometry (MS) detection methods for glycosylation evaluation may require multiple steps of glycan cleavage or extensive digestion of the mAb, chemical labeling of the glycans, column separation and report the chemical identity of glycans indirectly through retention time and molecular weight values. In demonstrating chemical structure similarity and comparability among mAb drugs, orthogonal analytical methods for measuring glycan chemistry are needed to ensure the quality of drug products. Here, a "middle-down" NMR method is developed as a proof-of-concept approach to measure the domain-specific glycosylation of marketed mAb drugs without cleavage of the glycan moieties. Complete glycan 1H/13C chemical shift assignments were obtained at 13C natural abundance from commercial standard glycans that allowed unambiguous determination of the chemical structure, glycosidic linkage position, and anomeric configuration of each monosaccharide in the major N-glycan scaffolds found in mAb molecules. The analysis of glycan anomeric peaks in two-dimensional (2D) 1H-13C NMR spectra yielded metrics for clinically important mAb quality attributes (i.e., galactosylation (Gal%) and fucosylation (Fuc%)), consistent with literature results using a standard glycan-mapping method. Therefore, the middle-down NMR method provided a facile orthogonal measurement for mAb glycosylation characterization with improved chemical information content on glycan structure determination and quantification, compared to standard approaches.
Collapse
Affiliation(s)
- Jiangnan Peng
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Sharadrao M. Patil
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David A. Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kang Chen
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
10
|
Profiling of N-linked glycans from 100 cells by capillary electrophoresis with large-volume dual preconcentration by isotachophoresis and stacking. J Chromatogr A 2018; 1565:138-144. [DOI: 10.1016/j.chroma.2018.06.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
|
11
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
12
|
Montacir O, Montacir H, Springer A, Hinderlich S, Mahboudi F, Saadati A, Parr MK. Physicochemical Characterization, Glycosylation Pattern and Biosimilarity Assessment of the Fusion Protein Etanercept. Protein J 2018; 37:164-179. [DOI: 10.1007/s10930-018-9757-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Immunoaffinity capture coupled with capillary electrophoresis - mass spectrometry to study therapeutic protein stability in vivo. Anal Biochem 2017; 539:118-126. [DOI: 10.1016/j.ab.2017.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/09/2023]
|
14
|
Mantovani V, Galeotti F, Maccari F, Volpi N. Recent advances in capillary electrophoresis separation of monosaccharides, oligosaccharides, and polysaccharides. Electrophoresis 2017; 39:179-189. [DOI: 10.1002/elps.201700290] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Veronica Mantovani
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Fabio Galeotti
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Francesca Maccari
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| | - Nicola Volpi
- Department of Life Sciences; University of Modena and Reggio Emilia; Modena Italy
| |
Collapse
|
15
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
16
|
Hajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta 2016; 943:8-16. [PMID: 27769380 DOI: 10.1016/j.aca.2016.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
Comprehensive carbohydrate analysis of glycoproteins from human biological samples and biotherapeutics are important from diagnostic and therapeutic points of view. This review summarizes the current state-of-the-art liquid phase separation techniques used in N-glycosylation analysis. The different liquid chromatographic techniques and capillary electrophoresis methods are critically discussed in detail. Miniaturization of these methods is also important to increase throughput and decrease analysis time. The sample preparation and labeling methods for asparagine linked oligosaccharides are also addressed.
Collapse
Affiliation(s)
- Laszlo Hajba
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | | | - Andras Guttman
- MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary; Horvath Csaba Laboratory of Bioseparation Sciences, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
17
|
Goetz S, Rejzek M, Nepogodiev SA, Field RA. The impact of aminopyrene trisulfonate (APTS) label in acceptor glycan substrates for profiling plant pectin β-galactosyltransferase activities. Carbohydr Res 2016; 433:97-105. [PMID: 27479753 PMCID: PMC5036537 DOI: 10.1016/j.carres.2016.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 12/23/2022]
Abstract
Aminopyrene trisulfonate (APTS)-labelled disaccharides are demonstrated to serve as readily accessible acceptor substrates for galactosyltransferase activities present in Arabidopsis microsome preparations. The reductive amination procedure used to install the fluorophore results in loss of the ring structure of the reducing terminal sugar unit, such that a single intact sugar ring is present, attached via an alditol tether to the aminopyrene fluorophore. The configuration of the alditol portion of the labelled acceptor, as well as the position of alditol galactosylation, substantially influence the ability of compounds to serve as Arabidopsis galactosyltransferase acceptor substrates. The APTS label exhibits an unexpected reaction-promoting effect that is not evident for structurally similar sulfonated aromatic fluorophores ANDS and ANTS. When APTS-labelled β-(1 → 4)-Gal3 was employed as an acceptor substrate with Arabidopsis microsomes, glycan extension generated β-(1 → 4)-galactan chains running to beyond 60 galactose residues. These studies demonstrate the potential of even very short glycan-APTS probes for assessing plant galactosyltransferase activities and the suitability CE-LIF for CAZyme profiling. APTS-labelled disaccharides serve as acceptor substrates for galactosyltransferases. Configuration of the alditol linker and site of glycosylation influence GalT turnover. APTS shows a reaction-promoting effect not evident for similar fluorophores. β-(1 → 4)-Gal3-APTS acceptor supports enzymatic extension to > 60 galactose residues Demonstrates the potential of glycan-APTS probes with CE-LIF for CAZyme profiling.
Collapse
Affiliation(s)
- Stephan Goetz
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
19
|
Dong Q, Yan X, Liang Y, Stein SE. In-Depth Characterization and Spectral Library Building of Glycopeptides in the Tryptic Digest of a Monoclonal Antibody Using 1D and 2D LC–MS/MS. J Proteome Res 2016; 15:1472-86. [DOI: 10.1021/acs.jproteome.5b01046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian Dong
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Xinjian Yan
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuxue Liang
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Stephen E. Stein
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
20
|
Han M, Rock BM, Pearson JT, Rock DA. Intact mass analysis of monoclonal antibodies by capillary electrophoresis—Mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1011:24-32. [DOI: 10.1016/j.jchromb.2015.12.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 12/23/2022]
|
21
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
22
|
Creamer JS, Oborny NJ, Lunte SM. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:5427-5449. [PMID: 25126117 PMCID: PMC4128283 DOI: 10.1039/c4ay00447g] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.
Collapse
Affiliation(s)
- Jessica S. Creamer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Nathan J. Oborny
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Bioengineering, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|