1
|
Rajj R, Schaadt N, Bezsila K, Balázs O, Jancsó MB, Auer M, Kiss DB, Fittler A, Somogyi-Végh A, Télessy IG, Botz L, Vida RG. Survey of Potential Drug Interactions, Use of Non-Medical Health Products, and Immunization Status among Patients Receiving Targeted Therapies. Pharmaceuticals (Basel) 2024; 17:942. [PMID: 39065792 PMCID: PMC11279607 DOI: 10.3390/ph17070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, several changes have occurred in the management of chronic immunological conditions with the emerging use of targeted therapies. This two-phase cross-sectional study was conducted through structured in-person interviews in 2018-2019 and 2022. Additional data sources included ambulatory medical records and the itemized reimbursement reporting interface of the National Health Insurance Fund. Drug interactions were analyzed using the UpToDate Lexicomp, Medscape drug interaction checker, and Drugs.com databases. The chi-square test was used, and odds ratios (ORs) were calculated. In total, 185 patients participated. In 53% of patients (n = 53), a serious drug-drug interaction (DDI) was identified (mean number: 1.07 ± 1.43, 0-7), whereas this value was 38% (n = 38) for potential drug-supplement interactions (mean number: 0.58 ± 0.85, 0-3) and 47% (n = 47) for potential targeted drug interactions (0.72 ± 0.97, 0-5) in 2018. In 2022, 78% of patients (n = 66) were identified as having a serious DDI (mean number: 2.27 ± 2.69, 0-19), 66% (n = 56) had a potential drug-supplement interaction (mean number: 2.33 ± 2.69, 0-13), and 79% (n = 67) had a potential targeted drug interactions (1.35 ± 1.04, 0-5). Older age (>60 years; OR: 2.062), female sex (OR: 3.387), and polypharmacy (OR: 5.276) were identified as the main risk factors. Screening methods and drug interaction databases do not keep pace with the emergence of new therapeutics.
Collapse
Affiliation(s)
- Réka Rajj
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Nóra Schaadt
- Central Clinical Pharmacy, Clinical Center, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Bezsila
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Orsolya Balázs
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Marcell B. Jancsó
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Milán Auer
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Dániel B. Kiss
- Central Clinical Pharmacy, Clinical Center, University of Pécs, 7624 Pécs, Hungary
| | - András Fittler
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Anna Somogyi-Végh
- Central Clinical Pharmacy, Clinical Center, University of Pécs, 7624 Pécs, Hungary
| | - István G. Télessy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| | - Lajos Botz
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
- Central Clinical Pharmacy, Clinical Center, University of Pécs, 7624 Pécs, Hungary
| | - Róbert Gy. Vida
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary (A.F.)
| |
Collapse
|
2
|
Getahun H, Belew S, Hasen G, Tefera Mekasha Y, Suleman S. Assessment of the extent and monetary loss in the selected public hospitals in Jimma Zone, Ethiopia: expired medicine perspectives. Front Med (Lausanne) 2024; 11:1283070. [PMID: 38435389 PMCID: PMC10906092 DOI: 10.3389/fmed.2024.1283070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Medicine plays a crucial role in the field of healthcare as a therapeutically significant pharmaceutical product. By effectively preventing diseases, medicine has the power to save countless lives and improve the quality of life for people worldwide. However, despite hospitals' efforts to provide medical care to patients, a significant issue arises from the substantial amount of drugs that go unused due to expiration dates. This problem is particularly prevalent in resource-limited countries like Ethiopia, where the pharmaceutical supply system fails to adequately address the issue of expired drugs in public hospitals, leading to an unsatisfactory situation. Hence, the objective of this study was to assess the economic impact and volume of expired medicines in the selected public hospitals in Jimma Zone, Southwestern Ethiopia. Methods A hospital-based cross-sectional study design was conducted to assess the economic impact and volume of expired medicines available in the public hospitals in Jimma Zone. All available hospitals that fulfilled the EFDA guidelines were included. The medication expiration rate was calculated by dividing the total monetary value of expired medicines in a year by the total value of medicines received in the same year multiplied by 100. Then, the collected data was cleared, filtered, coded, and quantitatively analyzed using the Microsoft Excel 2010 version. Results The average medicine waste rate was 4.87% in the fiscal year of 2019/2020 and 2020/2021 in Jimma Zone public hospitals worth 32,453.3 US$. Additionally, the facility wasted an estimated of 2711.44 US$ on the disposal of expired medicines. The expiration of medicines has been linked to several issues, including near-expiry, irrational prescribing practices, and weak participation of clinicians in medicine selection and quantification of the facility. Additionally, only two hospitals had relatively good storage and handling practices. Conclusion Overall, the expiration rate of medicines in the public hospitals in Jimma Zone was greater than the allowed level of 2%. In order to optimize the allocation of healthcare funds and ensure the appropriate use of pharmacologically significant medications it is vital to conduct a comprehensive examination at the national level within a regional hospitals.
Collapse
Affiliation(s)
- Habtamu Getahun
- Tullu Bolo General Hospital, Oromia Regional Health Bureau, Addis Ababa, Oromia, Ethiopia
| | - Sileshi Belew
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemmechu Hasen
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Yesuneh Tefera Mekasha
- Veterinary Pharmacy, Pharmaceutical Quality Assurance and Regulatory Affairs, University of Gondar, Gondar, Amhara, Ethiopia
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
3
|
Chikowe I, Bwaila KD, Ugbaja SC, Abouzied AS. GC-MS analysis, molecular docking, and pharmacokinetic studies of Multidentia crassa extracts' compounds for analgesic and anti-inflammatory activities in dentistry. Sci Rep 2024; 14:1876. [PMID: 38253619 PMCID: PMC10803350 DOI: 10.1038/s41598-023-47737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Plant extracts have been useful for oral health or dentistry. However, only a few evidence-based justifications exist. This study evaluated Multidentia crassa (Hiern) Bridson & Verdc, one of the oral health-used plants in Malawi. Gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) identified the extracts' compounds. The pharmacokinetics of the identified compounds were studied using pkCSM and SwissADME, and molecular docking studies were used to identify potential drug candidates for oral health by predicting the binding affinity of the compounds to cyclooxygenases, interleukin-1 beta receptors, odontoblast cold sensor proteins, and purinergic receptor P2X3. FT-IR analysis showed characteristic peaks of phenols, carboxylic acids, alkenes, alkyl halides, amines, esters, ethers, aromatics, and lipids. GC-MS results showed the presence of 58 bioactive phytocompounds, some of which have various pharmacological activities relevant to oral health. Molecular docking further validated stigmastan-3,5-diene's potency for analgesic and anti-inflammatory purposes. Based on a literature review, this is the first report on the bioactive compounds of M. crassa extracts showing analgesic and anti-inflammatory effects. This study's results can lead to new herbal and conventional medicines. Therefore, we recommend in vivo and in vitro studies to elucidate the pharmacological effects of the plant extracts.
Collapse
Affiliation(s)
- Ibrahim Chikowe
- Pharmacy Department, Kamuzu University of Health Sciences (KUHES), Blantyre, Malawi.
| | - King David Bwaila
- Pharmacy Department, Malawi College of Health Sciences, Zomba, Malawi
| | - Samuel Chima Ugbaja
- The Department of Population Science, African Health Research Institute (AHRI), Durban, South Africa
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12553, Egypt
| |
Collapse
|
4
|
Taneja SB, Callahan TJ, Paine MF, Kane-Gill SL, Kilicoglu H, Joachimiak MP, Boyce RD. Developing a Knowledge Graph for Pharmacokinetic Natural Product-Drug Interactions. J Biomed Inform 2023; 140:104341. [PMID: 36933632 PMCID: PMC10150409 DOI: 10.1016/j.jbi.2023.104341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Pharmacokinetic natural product-drug interactions (NPDIs) occur when botanical or other natural products are co-consumed with pharmaceutical drugs. With the growing use of natural products, the risk for potential NPDIs and consequent adverse events has increased. Understanding mechanisms of NPDIs is key to preventing or minimizing adverse events. Although biomedical knowledge graphs (KGs) have been widely used for drug-drug interaction applications, computational investigation of NPDIs is novel. We constructed NP-KG as a first step toward computational discovery of plausible mechanistic explanations for pharmacokinetic NPDIs that can be used to guide scientific research. METHODS We developed a large-scale, heterogeneous KG with biomedical ontologies, linked data, and full texts of the scientific literature. To construct the KG, biomedical ontologies and drug databases were integrated with the Phenotype Knowledge Translator framework. The semantic relation extraction systems, SemRep and Integrated Network and Dynamic Reasoning Assembler, were used to extract semantic predications (subject-relation-object triples) from full texts of the scientific literature related to the exemplar natural products green tea and kratom. A literature-based graph constructed from the predications was integrated into the ontology-grounded KG to create NP-KG. NP-KG was evaluated with case studies of pharmacokinetic green tea- and kratom-drug interactions through KG path searches and meta-path discovery to determine congruent and contradictory information in NP-KG compared to ground truth data. We also conducted an error analysis to identify knowledge gaps and incorrect predications in the KG. RESULTS The fully integrated NP-KG consisted of 745,512 nodes and 7,249,576 edges. Evaluation of NP-KG resulted in congruent (38.98% for green tea, 50% for kratom), contradictory (15.25% for green tea, 21.43% for kratom), and both congruent and contradictory (15.25% for green tea, 21.43% for kratom) information compared to ground truth data. Potential pharmacokinetic mechanisms for several purported NPDIs, including the green tea-raloxifene, green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-venlafaxine interactions were congruent with the published literature. CONCLUSION NP-KG is the first KG to integrate biomedical ontologies with full texts of the scientific literature focused on natural products. We demonstrate the application of NP-KG to identify known pharmacokinetic interactions between natural products and pharmaceutical drugs mediated by drug metabolizing enzymes and transporters. Future work will incorporate context, contradiction analysis, and embedding-based methods to enrich NP-KG. NP-KG is publicly available at https://doi.org/10.5281/zenodo.6814507. The code for relation extraction, KG construction, and hypothesis generation is available at https://github.com/sanyabt/np-kg.
Collapse
Affiliation(s)
- Sanya B Taneja
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15206, USA.
| | - Tiffany J Callahan
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | | | - Halil Kilicoglu
- School of Information Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Marcin P Joachimiak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard D Boyce
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| |
Collapse
|
5
|
A Double-Edged Sword: Focusing on Potential Drug-to-Drug Interactions of Quercetin. REVISTA BRASILEIRA DE FARMACOGNOSIA 2022. [DOI: 10.1007/s43450-022-00347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Development, Characterization and In Vitro Antimicrobial Evaluation of Novel Flavonoids Entrapped Micellar Topical Formulations of Neomycin Sulfate. J Pharm Sci 2022; 111:3287-3296. [PMID: 35977592 DOI: 10.1016/j.xphs.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023]
Abstract
Flavonoids are the secondary metabolites widely used in pharmaceutical industries due to their several health benefits. Quercetin and rutin, well known flavonoids possesses various pharmacological properties but the constraints of poor aqueous solubility and impermeability across cell membranes restricts their use in formulation development. Moreover, the rising problem of antimicrobial resistance has also caused a serious threat to human life, thus demanding the urgent need of developing more effective antimicrobial formulations. In view of this, the present research work is focused on utilizing the most feasible flavonoid-surfactant concentrations obtained from the already reported physico-chemical analysis in developing an improved neomycin topical formulation through drug combinatorial approach. The formulations were subjected for assessment of physical parameters such as determination of pH, viscosity and spreadability. The drug release profile of the formulations was studied through different mathematical models. After evaluation of all the parameters, two best formulations (NQ-T2 [HE] and NR-T1 [HE]) were selected for antimicrobial evaluation studies against different bacterial and fungal clinical isolates. Among the two formulations, NQ-T2 [HE] showed excellent antibacterial activity against the bacterial strains while NR-T1 [HE] also exhibited promising results when compared with the standard formulations. Overall, this study represents a possible solution to enhance the antimicrobial efficacy of neomycin formulations by combining them with flavonoids through micelles assisted drug combination approach.
Collapse
|
7
|
Bao D, Xie X, Cheng M, Zhang K, Yue T, Liu A, Fang W, Wei Y, Zheng H, Piao JG, Xu D, Li Y. Hydroxy-safflower yellow A composites: An effective strategy to enhance anti-myocardial ischemia by improving intestinal permeability. Int J Pharm 2022; 623:121918. [PMID: 35716973 DOI: 10.1016/j.ijpharm.2022.121918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
Hydroxy-safflower yellow A (HSYA) is the chief component of safflower against myocardial ischemia (MI), and belongs to biopharmaceutics classification system (BCS) III drugs. Its structure contains multiple hydroxyl groups, contributing to its high polarity and poor oral bioavailability. The main objective of this study was to probe the potential of oral penetration enhancer n-[8-(2-hydroxybenzoyl) amino] sodium octanoate (SNAC) and cationic copolymer Eudragit®EPO (EPO) to promote absorption of HSYA. HSYA composites (SNAC-HSYA-EPO) were formed by hydrogen bonding and van der Waals force. SNAC-HSYA-EPO has biocompatibility, and can improve the membrane fluidity, uptake, transport, and penetration of Caco-2 cells. The mechanism of promoting of SNAC-HSYA-EPO may be related to energy and P-glycoprotein (P-gp) when compared with the inhibitor NaN3 and verapamil group. In the pharmacokinetic (PK) results, SNAC-HSYA-EPO significantly improved oral bioavailability. Pharmacodynamics (PD) results determined that SNAC-HSYA-EPO could improve the symptoms of MI. The mechanism of the SNAC-HSYA-EPO anti-MI is related to alleviating inflammation and anti-apoptosis to protect the heart. In summary, SNAC-HSYA-EPO prepared in this study possessed a complete appearance, high recombination rate and excellent oral permeability promoting ability. SNAC-HSYA-EPO has the potential to improve oral bioavailability and further enhance the anti-MI effect of HSYA.
Collapse
Affiliation(s)
- Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaowei Xie
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mengying Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ke Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tianxiang Yue
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Aidi Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weixiang Fang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hangsheng Zheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yuxian Li
- Traditional Chinese Medicine Department, Jilin Agricultural Science and Technology College, Jilin 132101, China.
| |
Collapse
|
8
|
Hossain S, Yousaf M, Liu Y, Chang D, Zhou X. An Overview of the Evidence and Mechanism of Drug-Herb Interactions Between Propolis and Pharmaceutical Drugs. Front Pharmacol 2022; 13:876183. [PMID: 35444531 PMCID: PMC9015648 DOI: 10.3389/fphar.2022.876183] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
With the growing interest in the medicinal use of propolis, numerous studies have reported significant interactions between propolis extract and pharmaceutical drugs which may result in great clinical benefits or risks. The present study aims to review the drug-herb interactions of the full-spectrum propolis extract and main pharmaceutical drugs from the pharmacodynamic and pharmacokinetic aspects and elucidate the underlying pharmacological mechanisms. A literature search was conducted between June 2021 and February 2022 in Google Scholar, PubMed, MEDLINE, and EMBASE databases to include English studies from years 2000 to 2022 that evaluated the interaction of full-spectrum propolis extract and standard pharmaceutical drugs/cytochromes P450s. Studies that looked into geopropolis, propolis fractions, and isolated compounds, or interaction of propolis with foods, bioactive molecules, or receptors other than standard pharmaceutical drugs were excluded. From a pharmacodynamic perspective, propolis extract exhibited positive or synergistic interaction with several chemotherapeutic drugs by enhancing antitumor activity, sensitizing the chemoresistance cell lines, and attenuating multi-organ toxicity. The molecular mechanisms were associated with upregulating the apoptotic signal and immunomodulatory activity and attenuating oxidative damage. Propolis extract also enhanced the anti-bacterial and antifungal activities of many antimicrobial drugs against sensitive and resistant organisms, with an effect against the gram-positive bacteria stronger than that of the gram-negative bacteria. The synergistic action was related to strengthened action on interfering cell wall integrity and protein synthesis. The strong antioxidant activity of propolis also strengthened the therapeutic effect of metformin in attenuating hyperglycemia and pancreatic damage, as well as mitigating oxidative stress in the liver, kidney, and testis. In addition, propolis showed a potential capacity to enhance short-term and long-term memory function together with donepezil and improve motor function with levodopa and parasite killing activity with praziquantel. Pharmacokinetic studies showed inhibitory activities of propolis extracts on several CYP450 enzymes in vitro and in vivo. However, the effects on those CYP450 were deemed insignificant in humans, which may be attributed to the low bioavailability of the contributing bioactive compounds when administered in the body. The enhanced bioactivities of propolis and main pharmaceutical drugs support using propolis in integrative medicine in anti-cancer, anti-microbial, antidiabetic, and neurological disorders, with a low risk of altered pharmacokinetic activities.
Collapse
Affiliation(s)
- Sanowar Hossain
- Department of Pharmacy, Pabna University of Science and Technology, Pabna, Bangladesh
| | - Muhammad Yousaf
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
9
|
La Rocca B, Sarazin P. MiXie, an Online Tool for Better Health Assessment of Workers Exposed to Multiple Chemicals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020951. [PMID: 35055775 PMCID: PMC8776190 DOI: 10.3390/ijerph19020951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
There is increasing concern for workers facing multiple chemical exposure. The accumulation of information on occupational conditions indicates the need to incorporate the concept of multiple exposures in the risk assessment process and to develop tools for assessing the potential impacts of multiple exposures on workers’ health. Our objective is to describe the MiXie online decision-making tool that can be used to assess the risk of exposure to multiple chemicals. The description includes the development of MiXie, the structure of its toxicological database according to the target organ or the mode of action, and the algorithm for quantitative analysis of a mixture. Two case studies of its use in evaluating the risks of multiple exposures in real workplace situations are presented. The case study in the printing industry showed increased risk for four toxicological classes (central nervous system damage, ocular damage, skin damage, and ototoxicity) associated with co-exposure to four chemicals during maintenance operations. The MiXie analysis also showed the presence of carcinogenic substances in the mixture and a risk to the development of the foetus. The case study in nail salons showed the presence of carcinogenic and sensitizing chemicals and an increased risk to upper airways. MiXie helps preventers evaluate the possible additive effects of mixtures, providing an easy-to-read diagnosis to identify risks incurred by co-exposed employees. In addition, MiXie identifies risky occupational situations that would go unnoticed without a multiple substance approach.
Collapse
Affiliation(s)
- Bénédicte La Rocca
- Toxicology and Biometrology Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1, Rue du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- Correspondence:
| | - Philippe Sarazin
- Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), 505, Boulevard de Maisonneuve Ouest, Montreal, QC H3A 3C2, Canada;
| |
Collapse
|
10
|
Ruan LH, Fan LL, Wang K, Zhang WQ, Wang XJ, Qiu XJ. The Effect of Posaconazole and Isavuconazole on the Pharmacokinetics of Erdafitinib in Beagle Dogs by UPLC-MS/MS. Front Pharmacol 2021; 12:749169. [PMID: 34912218 PMCID: PMC8666568 DOI: 10.3389/fphar.2021.749169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023] Open
Abstract
Objective: A robust, quick, and reliable ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) method for the quantification of erdafitinib in beagle dog plasma was developed and validated to evaluate the changes of posaconazole and isavuconazole on the pharmacokinetics of erdafitinib in beagle dogs, respectively. Methods: This experiment adopted a three-period self-control experimental design. In the first period (group A), erdafitinib was orally administered to six beagle dogs at a dose of 4 mg/kg. In the second period (group B), the same six beagle dogs were orally given posaconazole at a dose of 7 mg/kg, and after 30 min, erdafitinib was orally given. In the third period (group C), isavuconazole at a dose of 7 mg/kg was given orally, and then, erdafitinib was orally given. At the different time points after erdafitinib was given in the three periods, the blood samples were collected. The concentration of erdafitinib was detected by the developed UPLC-MS/MS method. DAS 2.0 was used to calculate the pharmacokinetic parameters of erdafitinib. Results: Erdafitinib had a good linear relationship in the range of 1–500 ng/ml, and the lower limit of quantification was 1 ng/ml. The precision, accuracy, extraction recovery, matrix effect, and stability meet the requirements of the guiding principles. After erdafitinib was combined with posaconazole, the Cmax and AUC0→t of erdafitinib increased by 27.19% and 47.62%, respectively, and the t1/2 was prolonged to 6.33 h. After erdafitinib was combined with isavuconazole, the Cmax and AUC0→t of erdafitinib increased by 23.13% and 54.46%, respectively, and the t1/2 was prolonged to 6.31 h. Conclusion: A robust and reliable UPLC-MS/MS method was fully optimized and developed to detect the plasma concentration of erdafitinib in beagle dogs. Posaconazole and isaconazole could inhibit the metabolism of erdafitinib in beagle dogs and increase the plasma exposure of erdafitinib.
Collapse
Affiliation(s)
- Lan-Hong Ruan
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.,School of Nursing of Henan University of Science and Technology, Luoyang, China
| | - Ling-Ling Fan
- School of Nursing of Henan University of Science and Technology, Luoyang, China
| | - Kun Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Wan-Qi Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xiao-Jun Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xiang-Jun Qiu
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Trunfio M, Scabini S, Mornese Pinna S, Rugge W, Alcantarini C, Pirriatore V, Di Perri G, Bonora S, Castelnuovo B, Calcagno A. The Manifesto of Pharmacoenosis: Merging HIV Pharmacology into Pathocoenosis and Syndemics in Developing Countries. Microorganisms 2021; 9:microorganisms9081648. [PMID: 34442727 PMCID: PMC8399770 DOI: 10.3390/microorganisms9081648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Pathocoenosis and syndemics theories have emerged in the last decades meeting the frequent need of better understanding interconnections and reciprocal influences that coexistent communicable and non-communicable diseases play in a specific population. Nevertheless, the attention to pharmacokinetic and pharmacodynamics interactions of co-administered drugs for co-present diseases is to date limitedly paid to alert against detrimental pharmacological combos. Low and middle-income countries are plagued by the highest burden of HIV, tuberculosis, malaria, and helminthiasis, and they are experiencing an alarming rise in non-communicable disorders. In these settings, co-infections and comorbidities are common, but no tailored prescribing nor clinical trials are used to assess and exploit existing opportunities for the simultaneous and potentially synergistic treatment of intertwined diseases. Pharmacoenosis is the set of interactions that take place within a host as well as within a population due to the compresence of two or more diseases and their respective treatments. This framework should pilot integrated health programmes and routine clinical practice to face drug–drug interaction issues, avoiding negative co-administrations but also exploiting potential favourable ones to make the best out of the worst situations; still, to date, guiding data on the latter possibility is limited. Therefore, in this narrative review, we have briefly described both detrimental and favourable physiopathological interactions between HIV and other common co-occurring pathologies (malaria, tuberculosis, helminths, and cardiovascular disorders), and we have presented examples of advantageous potential pharmacological interactions among the drugs prescribed for these diseases from a pharmacokinetics, pharmacodynamics, and pharmacogenetics standpoint.
Collapse
Affiliation(s)
- Mattia Trunfio
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
- Correspondence: ; Tel.: +39-011-439-3884
| | - Silvia Scabini
- Department of Medical Sciences, University of Torino, Città della Salute e della Scienza, 10150 Torino, Italy; (S.S.); (S.M.P.)
| | - Simone Mornese Pinna
- Department of Medical Sciences, University of Torino, Città della Salute e della Scienza, 10150 Torino, Italy; (S.S.); (S.M.P.)
| | - Walter Rugge
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Chiara Alcantarini
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Veronica Pirriatore
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Giovanni Di Perri
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Stefano Bonora
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| | - Barbara Castelnuovo
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala 22418, Uganda;
| | - Andrea Calcagno
- Department of Medical Sciences, Unit of Infectious Diseases, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy; (W.R.); (C.A.); (V.P.); (G.D.P.); (S.B.); (A.C.)
| |
Collapse
|
12
|
Joshi G, Kabra A, Goutam N, Sharma A. An Overview on Patient-Centered Clinical Services. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Drug-related problems (DRPs) had often been a concern in the system that needed to be detected, avoided, and addressed as soon as possible. The need for a clinical pharmacist becomes even more important. He is the one who can not only share the load but also be an important part of the system by providing required advice. They fill out the patient's pharmacotherapy reporting form and notify the medical team's head off any drug-related issues. General practitioners register severe adverse drug reactions (ADRs) yearly. As a result of all of this, a clinical pharmacist working in and around the healthcare system is expected to advance the pharmacy industry. Its therapy and drugs can improve one's health quality of life by curing, preventing, or diagnosing a disease, sign, or symptom. The sideshows, on the other hand, do much harm. Because of the services they offer, clinical pharmacy has grown in popularity. To determine the overall effect and benefits of the emergency department (ED) clinical pharmacist, a systematic review of clinical practice and patient outcomes will be needed. A clinical pharmacist's anatomy, toxicology, pharmacology, and medicinal chemistry expertise significantly improves a patient's therapy enforcement. It is now important to examine the failure points of healthcare systems as well as the individuals involved.
Collapse
Affiliation(s)
- Gaurav Joshi
- University Institute of Pharma Sciences, Chandigarh University
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University
| | | | | |
Collapse
|
13
|
Islam N, Irfan M, Hussain T, Mushtaq M, Khan IU, Yousaf AM, Ghori MU, Shahzad Y. Piperine phytosomes for bioavailability enhancement of domperidone. J Liposome Res 2021; 32:172-180. [PMID: 33944662 DOI: 10.1080/08982104.2021.1918153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The markedly low oral bioavailability of domperidone (anti-emetic drug) is associated with rapid first-pass metabolism in the intestine and liver. To counteract such affects, there is a need to devise a strategy to enhance absorption and subsequently bioavailability. Thus, the current study was aimed at synthesizing phytosomes consisting of phosphatidylcholine and piperine (a P-glycoprotein inhibitor). Phytosomes were prepared by salting-out method. The developed phytosomes were extensively characterized for size, zeta potential, polydispersity index, entrapment efficiency (EE %), infra-red spectroscopy, X-ray diffraction, in vitro drug release, ex vivo permeation, in vivo pharmacokinetic and toxicity. The engineered formulations of phytosomes with piperine exhibited a significant improvement in oral bioavailability of domperidone (79.5%) in comparison with the pure drug suspension under the same conditions. Pharmacokinetic parameters such as maximal plasma concentration (Cmax) and the plasma concentration (estimated from area under the curve; AUC) of domperidone have been greatly increased relative to drug alone. The improved drug absorption was attributed to inhibition of P-glycoprotein transporter. The findings of current research work suggest that the optimized phytosomes based drug delivery containing phytochemicals as bioenhancers have the potential to improve bioavailability of poorly bioavailable drugs that are substrate to P-glycoprotein.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Maria Mushtaq
- Faculty of Pharmaceutical Sciences, University of Sargodha, Sargodha, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
14
|
Amaeze O, Eng H, Horlbogen L, Varma MVS, Slitt A. Cytochrome P450 Enzyme Inhibition and Herb-Drug Interaction Potential of Medicinal Plant Extracts Used for Management of Diabetes in Nigeria. Eur J Drug Metab Pharmacokinet 2021; 46:437-450. [PMID: 33844145 DOI: 10.1007/s13318-021-00685-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of herbal medicines is common in Africa, and patients often use a combination of herbs and drugs. Concurrent herbal and pharmaceuticals treatments can cause adverse effects through herb-drug interactions (HDI). This study evaluated the potential risk of HDI for five medicinal plants, Vernonia amygdalina, Ocimum gratissimum, Moringa oleifera, Azadirachta indica, and Picralima nitida, using in vitro assays. Patients with diabetes and some other disease conditions commonly use these medicinal plants in Nigeria, and little is known regarding their potential for drug interaction, despite their enormous use. METHODS Crude extracts of the medicinal plants were evaluated for reversible and time-dependent inhibition (TDI) activity of six cytochrome P450 (CYP) enzymes using pooled human liver microsomes and cocktail probe-based assays. Enzyme activity was determined by quantifying marker metabolites' formation using liquid chromatography-mass spectrometry/mass spectrometry. The drug interaction potential was predicted for each herbal extract using the in vitro half-maximal inhibitory concentration (IC50) values and the percentage yield. RESULTS O. gratissimum methanol extracts reversibly inhibited CYP 1A2, 2C8, 2C9 and 2C19 enzymes (IC50: 6.21 µg/ml, 2.96 µg/ml, 3.33 µg/ml and 1.37 µg/ml, respectively). Additionally, V. amygdalina methanol extract inhibited CYP2C8 activity (IC50: 5.71 µg/ml); P. nitida methanol and aqueous extracts inhibited CYP2D6 activity (IC50: 1.99 µg/ml and 2.36 µg/ml, respectively) while A. indica methanol extract inhibited CYP 3A4/5, 2C8 and 2C9 activity (IC50: 7.31 µg/ml, 9.97 µg/ml and 9.20 µg/ml, respectively). The extracts showed a potential for TDI of the enzymes when incubated at 200 µg/ml; V. amygdalina and A. indica methanol extracts exhibited TDI potential for all the major CYPs. CONCLUSIONS The medicinal plants inhibited CYP activity in vitro, with the potential to cause in vivo HDI. Clinical risk assessment and proactive monitoring are recommended for patients who use these medicinal plants concurrently with drugs that are cleared through CYP metabolism.
Collapse
Affiliation(s)
- Ogochukwu Amaeze
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.,Department of Clinical Pharmacy and Biopharmacy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Heather Eng
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | - Lauren Horlbogen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT, USA
| | | | - Angela Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA.
| |
Collapse
|
15
|
Yasuda K, Watanabe K, Fukami T, Nakashima S, Ikushiro SI, Nakajima M, Sakaki T. Epicatechin gallate and epigallocatechin gallate are potent inhibitors of human arylacetamide deacetylase. Drug Metab Pharmacokinet 2021; 39:100397. [PMID: 34171773 DOI: 10.1016/j.dmpk.2021.100397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Recently, in addition to carboxylesterases (CESs), we found that arylacetamide deacetylase (AADAC) plays an important role in the metabolism of some clinical drugs. In this study, we screened for food-related natural compounds that could specifically inhibit human AADAC, CES1, or CES2. AADAC, CES1, and CES2 activities in human liver microsomes were measured using phenacetin, fenofibrate, and procaine as specific substrates, respectively. In total, 43 natural compounds were screened for their inhibitory effects on each of these enzymes. Curcumin and quercetin showed strong inhibitory effects against all three enzymes, whereas epicatechin, epicatechin gallate (ECg), and epigallocatechin gallate (EGCg) specifically inhibited AADAC. In particular, ECg and EGCg showed strong inhibitory effects on AADAC (IC50 values: 3.0 ± 0.5 and 2.2 ± 0.2 μM, respectively). ECg and EGCg also strongly inhibited AADAC-mediated rifampicin hydrolase activity in human liver microsomes with IC50 values of 2.2 ± 1.4 and 1.7 ± 0.4 μM, respectively, whereas it weakly inhibited p-nitrophenyl acetate hydrolase activity, which is catalyzed by AADAC, CES1, and CES2. Our results indicate that ECg and EGCg are potent inhibitors of AADAC.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Kazuki Watanabe
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shimon Nakashima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
16
|
Food-Drug Interactions with Fruit Juices. Foods 2020; 10:foods10010033. [PMID: 33374399 PMCID: PMC7823305 DOI: 10.3390/foods10010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Fruit juices contain a large number of phytochemicals that, in combination with certain drugs, can cause food–drug interactions that can be clinically significant and lead to adverse events. The mechanisms behind such interactions are in most cases related to phytochemical interference with the activity of cytochrome P450 metabolizing enzymes (CYPs) or drug transporters. Moreover, alterations in their activity can have a clinical relevance if systemic exposure to the drug is decreased or increased, meaning that the pharmacological drug effects are suboptimal, or the drug will cause toxicity. In general, the common pharmacokinetic parameters found to be altered in food–drug interactions regarding fruit juices are the area under the concentration–time curve, bioavailability, and maximum plasma concentration. In most cases, the results from the drug interaction studies with fruit juices provide only limited information due to the small number of subjects, which are also healthy volunteers. Moreover, drug interactions with fruit juices are challenging to predict due to the unknown amounts of the specific phytochemicals responsible for the interaction, as well as due to the inter-individual variability of drug metabolism, among others. Therefore, this work aims to raise awareness about possible pharmacological interactions with fruit juices.
Collapse
|
17
|
Schneider P, Castro PG, Pinhanços SM, Kerstjens M, van Roon EH, Essing AH, Dolman MEM, Molenaar JJ, Pieters R, Stam RW. Decitabine mildly attenuates MLL-rearranged acute lymphoblastic leukemia in vivo, and represents a poor chemo-sensitizer. EJHAEM 2020; 1:527-536. [PMID: 35844991 PMCID: PMC9175850 DOI: 10.1002/jha2.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
MLL-rearranged acute lymphoblastic leukemia (ALL) represents a highly aggressive ALL subtype, characterized by aberrant DNA methylation patterns. DNA methyltransferase inhibitors, such as decitabine have previously been demonstrated to be effective in eradicating MLL-rearranged ALL cells in vitro. Here, we assessed the in vivo anti-leukemic potential of low-dose DNA methyltransferase inhibitor decitabine using a xenograft mouse model of human MLL-rearranged ALL. Furthermore, we explored whether prolonged exposure to low-dose decitabine could chemo-sensitize MLL-rearranged ALL cells toward conventional chemotherapy as well as other known epigenetic-based and anti-neoplastic compounds. Our data reveal that decitabine prolonged survival in xenograft mice of MLL-rearranged ALL by 8.5 days (P = .0181), but eventually was insufficient to prevent leukemia out-growth, based on the examination of the MLLAF4 cell line SEM. Furthermore, we observe that prolonged pretreatment of low-dose decitabine mildly sensitized toward the conventional drugs prednisolone, vincristine, daunorubicin, asparaginase, and cytarabine in a panel of MLL-rearranged cell lines. Additionally, we assessed synergistic effects of decitabine with other epigenetic-based or anticancer drugs using high-throughput drug library screens. Validation of the top hits, including histone deacetylase inhibitor panobinostat, BCL2 inhibitor Venetoclax, MEK inhibitor pimasertib, and receptor tyrosine kinase foretinib, revealed additive and moderate synergistic effects for the combination of each drug together with decitabine in a cell line-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Mark Kerstjens
- Department of Pediatric Hematology/OncologyErasmus MC ‐ Sophia Children's HospitalRotterdamThe Netherlands
| | - Eddy H. van Roon
- Department of Pediatric Hematology/OncologyErasmus MC ‐ Sophia Children's HospitalRotterdamThe Netherlands
| | - Anke H.W. Essing
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | | | - Jan J. Molenaar
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| |
Collapse
|
18
|
Vázquez M, Guevara N, Maldonado C, Guido PC, Schaiquevich P. Potential Pharmacokinetic Drug-Drug Interactions between Cannabinoids and Drugs Used for Chronic Pain. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3902740. [PMID: 32855964 PMCID: PMC7443220 DOI: 10.1155/2020/3902740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Choosing an appropriate treatment for chronic pain remains problematic, and despite the available medication for its treatment, still, many patients complain about pain and appeal to the use of cannabis derivatives for pain control. However, few data have been provided to clinicians about the pharmacokinetic drug-drug interactions of cannabinoids with other concomitant administered medications. Therefore, the aim of this brief review is to assess the interactions between cannabinoids and pain medication through drug transporters (ATP-binding cassette superfamily members) and/or metabolizing enzymes (cytochromes P450 and glucuronyl transferases).
Collapse
Affiliation(s)
- Marta Vázquez
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Natalia Guevara
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Maldonado
- Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Paulo Cáceres Guido
- Unidad de Farmacocinética Clínica, Farmacia, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Medicina de Precisión, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
19
|
McClements DJ. Nano-enabled personalized nutrition: Developing multicomponent-bioactive colloidal delivery systems. Adv Colloid Interface Sci 2020; 282:102211. [PMID: 32721626 DOI: 10.1016/j.cis.2020.102211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022]
Abstract
There is growing interest in the production of foods and beverages with nutrient and nutraceutical profiles tailored to an individual's specific nutritional requirements. In principle, these personalized nutrition products are formulated based on the genetics, epigenetics, metabolism, microbiome, phenotype, lifestyle, age, gender, and health status of a person. A challenge in this area is to create customized functional food and beverage products that contain the required combination of bioactive agents, such as lipids, proteins, carbohydrates, vitamins, minerals, nutraceuticals, prebiotics and probiotics. Nanotechnology may facilitate the development of these kind of products since it can be used to encapsulate one or more bioactive agent in a single colloidal delivery system. This delivery system may contain one or more different kinds of colloidal particle, specifically designed to protect each nutrient in the food, but then deliver it in a bioavailable form after ingestion. This review article provides an overview of the different kinds of bioactives that need to be delivered, as well as some of the challenges associated with incorporating them into functional foods and beverages. It then highlights how nanotech-enabled colloidal delivery systems can be developed to encapsulate multiple bioactive agents in a form suitable for functional food applications, particularly in the personalized nutrition field.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Zhejiang, Hangzhou 310018, China.
| |
Collapse
|
20
|
Ali I, Bazzar A, Hussein N, Sahhar E. Potential drug-drug interactions in ICU patients: a retrospective study. Drug Metab Pers Ther 2020; 35:dmpt-2020-0114. [PMID: 32681774 DOI: 10.1515/dmpt-2020-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Objectives A "potential drug-drug interaction" (pDDI) is the possibility one drug has to alter the effects of another when both are administered simultaneously. Intensive care unit (ICU) patients are especially prone to these pDDIs. This study aimed to determine the frequency and severity of pDDIs during the hospitalization of patients in the ICU. Methods This study was conducted retrospectively in three hospitals, including both governmental and non-governmental hospitals in Nablus, Palestine, over the course of six months; starting in January 2018 and ending in June 2018. The sample size included 232 ICU patients, and medications prescribed during the hospitalization of these patients were evaluated for pDDIs using the drugs.com application. Results A total of 167 patients (72%) were found to have at least one pDDI, while the total number of pDDIs in the study was 422, resulting in an average of 1.82 pDDIs per patient. Out of the total identified pDDIs, 41 interactions (9.7%) were major interactions, 281 (66.6%) were moderate interactions and 100 (23.7%) were minor interactions. The past medical history of these patients showed that many had hypertension (29%), diabetes mellitus (25%) and ischemic heart disease (10%). A serious combination, enoxaparin and aspirin, was found in six patients. Furthermore, as the number of administered drugs increased, the number of interactions increased as well. Conclusions The pDDIs are common in ICU patients. The most common and clinically most important pDDIs require special attention. Polypharmacy significantly increases the number and level of pDDIs, especially in patients with multiple chronic illnesses. Adequate knowledge regarding the most common pDDIs is necessary to enable healthcare professionals to implement ICU strategies that ensure patient safety.
Collapse
Affiliation(s)
- Iyad Ali
- Department of Biochemistry, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Alaa Bazzar
- Department of Human Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nadine Hussein
- Department of Human Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Emile Sahhar
- Department of Human Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
21
|
Effect of pineapple juice on the pharmacokinetics of celecoxib and montelukast in humans. Ther Deliv 2020; 11:301-311. [PMID: 32507029 DOI: 10.4155/tde-2020-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To study the influence of pineapple juice on the pharmacokinetics of celecoxib and montelukast in humans. Experimental methods: The research comprised two separate arms. Each arm was randomized, two-crossover periods separated by a 2-week washout period. Subjects received a single dose of celecoxib or montelukast after pretreatment with either water or pineapple juice for 4 days before the study beginning. Results & conclusion: Pineapple juice enhanced the systemic exposure of both drugs without any noticeable adverse effects. For celecoxib, Cmax and AUC0-∞ were increased significantly by 40 and 60%, respectively. Cl/F was decreased by 45% without affecting its t1/2. For montelukast, Cmax and AUC0-∞ were significantly increased by 21 and 48%, respectively, along with 25% decrease in clearance and 13% increase in t1/2.
Collapse
|
22
|
Svitina H, Swanepoel R, Rossouw J, Netshimbupfe H, Gouws C, Hamman J. Treatment of Skin Disorders with Aloe Materials. Curr Pharm Des 2020; 25:2208-2240. [PMID: 31269881 DOI: 10.2174/1381612825666190703154244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ and functions as a barrier to protect the underlying tissues against the elements and pathogens, while also fulfilling many physiological roles and biochemical functions such as preventing excessive water loss. Skin disorders vary greatly in terms of origin, severity, symptoms and affect persons of all ages. Many plants have been used for medicinal purposes since ancient times including the treatment of skin disorders and diseases. Aloe represents one of the earliest medicinal plant species mentioned in antique scriptures and even in rock art dating back thousands of years. Different Aloe species and materials have been used in the prevention and treatment of skin related disorders. Aloe vera is the most commonly used Aloe species for medicinal purposes. Some of the most prominent skin related applications and disorders that Aloe materials have been investigated for are discussed in this paper, which include cosmetic, radiation, cancer, wound and antimicrobial applications. Both in vitro and in vivo studies are included in the discussions of this paper and comprehensive summaries of all these studies are given in tables in each section. Although some contradictory results were obtained among studies, certain Aloe materials have shown excellent efficacy and exhibited potential for the treatment of skin related disorders and cosmetic applications.
Collapse
Affiliation(s)
- Hanna Svitina
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Roan Swanepoel
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Jacques Rossouw
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Happiness Netshimbupfe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
23
|
Granato D, Mocan A, Câmara JS. Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Lomesh SK, Bala M, Nathan V. Physicochemical approach to study the solute-solute and solute-solvent interactions of drug Levofloxacin hemihydrate in aqueous sorbitol solutions at different temperatures: Volumetric, acoustic and conductance studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Food Bioactive Compounds and Their Interference in Drug Pharmacokinetic/Pharmacodynamic Profiles. Pharmaceutics 2018; 10:pharmaceutics10040277. [PMID: 30558213 PMCID: PMC6321138 DOI: 10.3390/pharmaceutics10040277] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Preclinical and clinical studies suggest that many food molecules could interact with drug transporters and metabolizing enzymes through different mechanisms, which are predictive of what would be observed clinically. Given the recent incorporation of dietary modifications or supplements in traditional medicine, an increase in potential food-drug interactions has also appeared. The objective of this article is to review data regarding the influence of food on drug efficacy. Data from Google Scholar, PubMed, and Scopus databases was reviewed for publications on pharmaceutical, pharmacokinetic, and pharmacodynamic mechanisms. The following online resources were used to integrate functional and bioinformatic results: FooDB, Phenol-Explorer, Dr. Duke's Phytochemical and Ethnobotanical Databases, DrugBank, UniProt, and IUPHAR/BPS Guide to Pharmacology. A wide range of food compounds were shown to interact with proteins involved in drug pharmacokinetic/pharmacodynamic profiles, starting from drug oral bioavailability to enteric/hepatic transport and metabolism, blood transport, and systemic transport/metabolism. Knowledge of any food components that may interfere with drug efficacy is essential, and would provide a link for obtaining a holistic view for cancer, cardiovascular, musculoskeletal, or neurological therapies. However, preclinical interaction may be irrelevant to clinical interaction, and health professionals should be aware of the limitations if they intend to optimize the therapeutic effects of drugs.
Collapse
|