1
|
Larsen NW, Kostrikov S, Hansen MB, Hjørringgaard CU, Larsen NB, Andresen TL, Kristensen K. Interactions of oral permeation enhancers with lipid membranes in simulated intestinal environments. Int J Pharm 2024; 654:123957. [PMID: 38430950 DOI: 10.1016/j.ijpharm.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
The oral bioavailability of therapeutic peptides is generally low. To increase peptide transport across the gastrointestinal barrier, permeation enhancers are often used. Despite their widespread use, mechanistic knowledge of permeation enhancers is limited. To address this, we here investigate the interactions of six commonly used permeation enhancers with lipid membranes in simulated intestinal environments. Specifically, we study the interactions of the permeation enhancers sodium caprate, dodecyl maltoside, sodium cholate, sodium dodecyl sulfate, melittin, and penetratin with epithelial cell-like model membranes. To mimic the molecular composition of the real intestinal environment, the experiments are performed with two peptide drugs, salmon calcitonin and desB30 insulin, in fasted-state simulated intestinal fluid. Besides providing a comparison of the membrane interactions of the studied permeation enhancers, our results demonstrate that peptide drugs as well as intestinal-fluid components may substantially change the membrane activity of permeation enhancers. This highlights the importance of testing permeation enhancement in realistic physiological environments and carefully choosing a permeation enhancer for each individual peptide drug.
Collapse
Affiliation(s)
- Nanna Wichmann Larsen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Serhii Kostrikov
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten Borre Hansen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claudia Ulrich Hjørringgaard
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Niels Bent Larsen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Lars Andresen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Kasper Kristensen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Tyagi P, Patel C, Gibson K, MacDougall F, Pechenov SY, Will S, Revell J, Huang Y, Rosenbaum AI, Balic K, Maharoof U, Grimsby J, Subramony JA. Systems Biology and Peptide Engineering to Overcome Absorption Barriers for Oral Peptide Delivery: Dosage Form Optimization Case Study Preceding Clinical Translation. Pharmaceutics 2023; 15:2436. [PMID: 37896196 PMCID: PMC10610252 DOI: 10.3390/pharmaceutics15102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Oral delivery of peptides and biological molecules promises significant benefits to patients as an alternative to daily injections, but the development of these formulations is challenging due to their low bioavailability and high pharmacokinetic variability. Our earlier work focused on the discovery of MEDI7219, a stabilized, lipidated, glucagon-like peptide 1 agonist peptide, and the selection of sodium chenodeoxycholate (Na CDC) and propyl gallate (PG) as permeation enhancer combinations. We hereby describe the development of the MEDI7219 tablet formulations and composition optimization via in vivo studies in dogs. We designed the MEDI7219 immediate-release tablets with the permeation enhancers Na CDC and PG. Immediate-release tablets were coated with an enteric coating that dissolves at pH ≥ 5.5 to target the upper duodenal region of the gastrointestinal tract and sustained-release tablets with a Carbopol bioadhesive polymer were coated with an enteric coating that dissolves at pH ≥ 7.0 to provide a longer presence at the absorption site in the gastrointestinal tract. In addition to immediate- and enteric-coated formulations, we also tested a proprietary delayed release erodible barrier layer tablet (OralogiKTM) to deliver the payload to the target site in the gastrointestinal tract. The design of tablet dosage forms based on the optimization of formulations resulted in up to 10.1% absolute oral bioavailability in dogs with variability as low as 26% for MEDI7219, paving the way for its clinical development.
Collapse
Affiliation(s)
- Puneet Tyagi
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Chandresh Patel
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | | | - Sergei Y. Pechenov
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sarah Will
- Bioscience Metabolism, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA (J.G.)
| | - Jefferson Revell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, San Francisco, CA 94080, USA (A.I.R.)
| | - Anton I. Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, San Francisco, CA 94080, USA (A.I.R.)
| | - Kemal Balic
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, San Francisco, CA 94080, USA;
| | - Umar Maharoof
- Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph Grimsby
- Bioscience Metabolism, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA (J.G.)
| | - J. Anand Subramony
- Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| |
Collapse
|
3
|
Abou Assi R, Abdulbaqi IM, Tan SM, Wahab HA, Darwis Y, Chan SY. Breaking barriers: bilosomes gel potentials to pave the way for transdermal breast cancer treatment with Tamoxifen. Drug Dev Ind Pharm 2023:1-12. [PMID: 37722711 DOI: 10.1080/03639045.2023.2256404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE Breast cancer affects women globally, regardless of age or location. On the other hand, Tamoxifen (TXN), a class II biopharmaceutical drug is acting as a prophylactic/treating agent for women at risk of and/or with hormone receptor-positive breast cancer. However, its oral administration has life-threatening side effects, which have led researchers to investigate alternative delivery methods. One such method is transdermal drug delivery utilizing bile salts as penetration enhancers, aka Bilosomes. METHODS Bilosomes formulations were optimized statistically for the outcome of vesicle shape, size, and entrapment efficiency using two types of bile, i.e. sodium taurocholate and sodium cholate. These bilosomes were then loaded into HPMC base gel and further characterized for their morphology, drug content, pH, viscosity, spreadability and eventually ex-vivo skin penetration and deposition studies. RESULTS Findings showed that sodium cholate has superiority as a penetration enhancer over sodium taurocholate in terms of morphological characterizes, zeta potential, and cumulative amounts of tamoxifen permeated per unit area (15.13 ± 0.71 μg/cm2 and 6.51 ± 0.6 μg/cm2 respectively). In fact, bilosomes designed with sodium cholate provided around 9 folds of skin deposition compared to TXN non-bilosomal gel. CONCLUSION Bilosomes gels could be a promising option for locally delivering tamoxifen to the breast through the skin, offering an encouraging transdermal solution.
Collapse
Affiliation(s)
- Reem Abou Assi
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- EDEN Research Group, Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
| | - Ibrahim M Abdulbaqi
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- PractSol Research Group, College of Pharmacy, Al-Kitab University, Kirkuk, Iraq
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| | - Siew Mei Tan
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation (PhDS) Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| | - Yusrida Darwis
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Siok-Yee Chan
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
4
|
Calzadilla N, Comiskey SM, Dudeja PK, Saksena S, Gill RK, Alrefai WA. Bile acids as inflammatory mediators and modulators of intestinal permeability. Front Immunol 2022; 13:1021924. [PMID: 36569849 PMCID: PMC9768584 DOI: 10.3389/fimmu.2022.1021924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Bile acids are critical for the digestion and absorption of lipids and fat-soluble vitamins; however, evidence continues to emerge supporting additional roles for bile acids as signaling molecules. After they are synthesized from cholesterol in the liver, primary bile acids are modified into secondary bile acids by gut flora contributing to a diverse pool and making the composition of bile acids highly sensitive to alterations in gut microbiota. Disturbances in bile acid homeostasis have been observed in patients with Inflammatory Bowel Diseases (IBD). In fact, a decrease in secondary bile acids was shown to occur because of IBD-associated dysbiosis. Further, the increase in luminal bile acids due to malabsorption in Crohn's ileitis and ileal resection has been implicated in the induction of diarrhea and the exacerbation of inflammation. A causal link between bile acid signaling and intestinal inflammation has been recently suggested. With respect to potential mechanisms related to bile acids and IBD, several studies have provided strong evidence for direct effects of bile acids on intestinal permeability in porcine and rodent models as well as in humans. Interestingly, different bile acids were shown to exert distinct effects on the inflammatory response and intestinal permeability that require careful consideration. Such findings revealed a potential effect for changes in the relative abundance of different bile acids on the induction of inflammation by bile acids and the development of IBD. This review summarizes current knowledge about the roles for bile acids as inflammatory mediators and modulators of intestinal permeability mainly in the context of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nathan Calzadilla
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Department of Bioengineering, University of Illinois, Chicago, IL, United States
| | - Shane M. Comiskey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Pradeep K. Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
| | - Waddah A. Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois, Chicago, IL, United States
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Rabinowicz AL, Carrazana E, Maggio ET. Improvement of Intranasal Drug Delivery with Intravail ® Alkylsaccharide Excipient as a Mucosal Absorption Enhancer Aiding in the Treatment of Conditions of the Central Nervous System. Drugs R D 2021; 21:361-369. [PMID: 34435339 PMCID: PMC8602465 DOI: 10.1007/s40268-021-00360-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 10/26/2022] Open
Abstract
Intranasal drug administration is a commonly used route for therapeutic formulations, but there may be challenges associated with a lack of absorption and bioavailability, as well as damage to mucosal tissue. To address these issues, potential absorption enhancers that are generally nonirritating to nasal mucosal tissue have been investigated as excipients in intranasal formulations. Among those studied are alkylsaccharides, which are composed of sugars covalently coupled to at least one alkyl chain. Alkylsaccharides have been shown to be nontoxic and have been used in food products as emulsifiers. In clinical trials, alkylsaccharide excipients have demonstrated substantially increased absorption of therapeutic agents across mucosal membranes and have been shown to be applicable to a wide range of types of molecules and molecular weights. Because they are water and oil soluble, alkylsaccharide excipients can be used in formulations with both hydrophilic and hydrophobic drugs. They are also effective in safely stabilizing protein therapeutics. An example of an alkylsaccharide excipient is dodecyl maltoside (Intravail®; 511 Da, stable long term when stored cold), which provides absorption enhancement by paracellular and transcellular routes. Dodecyl maltoside has been shown to be generally nonirritating to the nose and to promote systemic bioavailability. Dodecyl maltoside is used in US Food and Drug Administration-approved intranasal formulations of sumatriptan for migraine headaches and diazepam nasal spray for patients with epilepsy with acute seizure clusters.
Collapse
|
6
|
Maher S, Geoghegan C, Brayden DJ. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opin Drug Deliv 2020; 18:273-300. [PMID: 32937089 DOI: 10.1080/17425247.2021.1825375] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Intestinal permeation enhancers (PEs) are substances that transiently alter the intestinal epithelial barrier to facilitate permeation of macromolecules with low oral bioavailability (BA). While a number of PEs have progressed to clinical testing in conventional formulations with macromolecules, there has been only low single digit increases in oral BA, irrespective of whether the drug met primary or secondary clinical endpoints. AREAS COVERED This article considers the causes of sub-optimal BA of macromolecules from PE dosage forms and suggests approaches that may improve performance in humans. EXPERT OPINION Permeation enhancement is most effective when the PE is co-localized with the macromolecule at the epithelial surface. Conditions in the GI tract impede optimal co-localization. Novel delivery systems that limit dilution and spreading of the PE and macromolecule in the small intestine have attempted to replicate promising enhancement efficacy observed in static drug delivery models.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Caroline Geoghegan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Danielsen EM. Intestinal permeation enhancers: Lessons learned from studies using an organ culture model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183474. [PMID: 32946886 DOI: 10.1016/j.bbamem.2020.183474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023]
Abstract
Permeation enhancers (PEs) are compounds aimed to increase intestinal uptake of oral drugs with poor bioavailability. This mini-review focuses on results recently obtained with PEs using an intestinal organ culture model. The model predicts which paracellular/transcellular pathways across the epithelium are susceptible to different classes of PEs (mainly surfactants and cell penetrating peptides). PEs: 1) generate a transmembrane transcellular pathway, 2) block apical endocytosis (first step in apical-to-basolateral transcytosis), and 3) perturb normal cell membrane integrity. The results argue that surfactants and cell penetrating peptides are not suitable for use in formulations aimed to exploit transcytosis in oral drug delivery.
Collapse
Affiliation(s)
- E Michael Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Danielsen EM, De Haro Hernando A, Yassin M, Rasmussen K, Olsen J, Hansen GH, Danielsen EM. Short-term tissue permeability actions of dextran sulfate sodium studied in a colon organ culture system. Tissue Barriers 2020; 8:1728165. [PMID: 32079482 PMCID: PMC7549740 DOI: 10.1080/21688370.2020.1728165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dextran sulfate sodium (DSS)-induced colitis is the most commonly used animal model for inflammatory bowel diseases. However, the precise molecular action of DSS, in particular its initial effect on the epithelial tissue permeability, is still poorly understood. In the present work, organ culture of mouse – and pig colon explants were performed for 1–2 h in the presence/absence of 2% DSS together with polar- and lipophilic fluorescent probes. Probe permeability was subsequently assessed by fluorescence microscopy. DSS rapidly increased paracellular permeability of 70-kDa dextran without otherwise affecting the overall epithelial integrity. FITC-conjugated DSS likewise permeated the epithelial barrier and strongly accumulated in nuclei of cells scattered in the lamina propria. By immunolabeling, plasma cells, T cells, macrophages, mast cells, and fibroblasts were identified as possible targets for DSS, indicating that accumulation of the polyanion in nuclei was not confined to a particular type of cell in the lamina propria. In contrast, colonocytes were rarely targeted by DSS, but as visualized by transmission electron microscopy, it induced the formation of vacuole-like structures in the intercellular space between adjacent epithelial cells. Nuclei of various cell types in the lamina propria, including both cells of the innate and adaptive immune system, are novel targets for a rapid action of DSS, and from previous in vitro studies, polyanions like DSS are known to disrupt nucleosomes by binding to the histones. We therefore propose that nuclear targeting is one way whereby DSS exerts its inflammatory action as a colitogen in animal models of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Elisabeth M Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Alba De Haro Hernando
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Mohammad Yassin
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Karina Rasmussen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Jørgen Olsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Gert H Hansen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| | - E Michael Danielsen
- Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences, University of Copenhagen , Copenhagen, Denmark
| |
Collapse
|
9
|
Transmucosal Absorption Enhancers in the Drug Delivery Field. Pharmaceutics 2019; 11:pharmaceutics11070339. [PMID: 31311173 PMCID: PMC6680553 DOI: 10.3390/pharmaceutics11070339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/11/2023] Open
Abstract
Drug delivery systems that safely and consistently improve transport of poorly absorbed compounds across epithelial barriers are highly sought within the drug delivery field. The use of chemical permeation enhancers is one of the simplest and widely tested approaches to improve transmucosal permeability via oral, nasal, buccal, ocular and pulmonary routes. To date, only a small number of permeation enhancers have progressed to clinical trials, and only one product that includes a permeation enhancer has reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Transmucosal Absorption Enhancers in the Drug Delivery Field (https://www.mdpi.com/journal/pharmaceutics/special_issues/transmucosal_absorption_enhancers). The guest editors outline the scope of the issue, reflect on the results and the conclusions of the 19 articles published in the issue and provide an outlook on the use of permeation enhancers in the drug delivery field.
Collapse
|
10
|
Danielsen EM, Hansen GH. Probing paracellular - versus transcellular tissue barrier permeability using a gut mucosal explant culture system. Tissue Barriers 2019; 7:1601955. [PMID: 30999787 DOI: 10.1080/21688370.2019.1601955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Intestinal permeation enhancers (PEs), i.e. agents improving oral delivery of therapeutic drugs with poor bioavailability, may typically act by two principally different mechanisms: to increase either transcellular -or paracellular passage across the epithelium. With the aim to define these different modes of action in a small intestinal mucosal explant system, the transcellular-acting PE sodium dodecyl sulfate (SDS) was compared to the paracellular-acting PE ethylenediaminetetraacetic acid (EDTA), using several fluorescent polar - and lipophilic probes. Here, SDS rendered the enterocyte cell membranes leaky for the relatively small polar tracers Lucifer yellow and a 3 kD Texas red-conjugated dextran, but most conspicuously SDS blocked constitutive endocytosis from the brush border. In contrast, the main action of EDTA was to increase paracellular passage across the epithelium of both polar probes, including 10 - and 70 kDa dextrans and lipophilic probes, visualized by distinct stripy lateral staining of enterocytes and/or accumulation in the lamina propria. In addition, EDTA caused a loss of epithelial cell polarity by opening tight junctions for diffusion of domain-specific basolateral/apical cell membrane protein markers into the opposite domains. By transmission electron microscopy, SDS caused the formation of vacuoles and vesicle-like structures at the lateral cell membranes. In contrast, EDTA led to a bulging of the whole enterocyte apex, resulting in a "cobblestone" appearance of the epithelium, probably caused by an extreme contraction of the perijunctional actomyosin ring. We conclude that the mucosal explant system is a convenient model for predicting transcellular/paracellular modes of action of novel prospective PEs.
Collapse
Affiliation(s)
- E Michael Danielsen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Gert H Hansen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|