1
|
Chen Y, Xiao X, Huang C, Zhu J, Zhou H, Qin H, Bao Y, Zhuang T, Zhang G. Flupirtine and antihistamines exert synergistic anti-nociceptive effects in mice. Psychopharmacology (Berl) 2023; 240:881-897. [PMID: 36752814 DOI: 10.1007/s00213-023-06329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
RATIONALE Drug combinations are commonly used in pain management, which can produce potent analgesic effects with reduced dosage and adverse effects. OBJECTIVE This study was designed to evaluate the anti-nociceptive effects and adverse effects of new combinations of flupirtine (a Kv7 potassium channel opener) and antihistamines (promethazine, fexofenadine) on acute and chronic pain in mice, and the possible mechanisms behind the synergistic analgesic effects were preliminarily investigated. METHODS In acetic acid writhing test, carrageenan-induced inflammatory pain model, and paclitaxel-induced neuropathic pain model, the interaction indexes (γ) between flupirtine and antihistamines were determined by isobolographic analysis. Furthermore, the Kv7 channel blocker XE991 was used to determine whether the effects of single agents and drug combinations on paclitaxel- and carrageenan-induced mechanical allodynia were mediated by Kv7 channels. Finally, hepatotoxicity markers, liver histopathology, and the rotarod test were used to investigate the adverse effects of drugs in combination doses. RESULTS The interaction indexes of flupirtine-promethazine and flupirtine-fexofenadine in all the above three pain models were lower than 1. The analgesic effects of flupirtine (13 mg/kg), promethazine (5 mg/kg), fexofenadine (20 mg/kg), and their combinations were antagonized significantly by XE991 (3 mg/kg). And the adverse effects of flupirtine and antihistamines in combination doses were not significantly different from the vehicle group. CONCLUSIONS Flupirtine and antihistamines produced synergistic analgesic effects in all the above pain models. The analgesic effects of antihistamines were partially mediated by Kv7/M channels, and the activation of Kv7/M channels may be partly responsible for the synergistic analgesic effects between flupirtine and antihistamines.
Collapse
Affiliation(s)
- Yanming Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyi Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chaonan Huang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huiling Zhou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huimin Qin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Bao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. .,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. .,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
3
|
Guidotti I, Lugli L, Ori L, Roversi MF, Casa Muttini ED, Bedetti L, Pugliese M, Cavalleri F, Stefanelli F, Ferrari F, Berardi A. Neonatal seizures treatment based on conventional multichannel EEG monitoring: an overview of therapeutic options. Expert Rev Neurother 2022; 22:623-638. [PMID: 35876114 DOI: 10.1080/14737175.2022.2105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Seizures are the main neurological emergency during the neonatal period and are mostly acute and focal. The prognosis mainly depends on the underlying etiology. Conventional multichannel video-electroencephalographic (cEEG) monitoring is the gold standard for diagnosis, but treatment remains a challenge. AREAS COVERED : This review, based on PubMed search over the last 4 decades, focuses on the current treatment options for neonatal seizures based on cEEG monitoring. There is still no consensus on seizure therapy, owing to poor scientific evidence. Traditionally, the first-line treatments are phenobarbital and phenytoin, followed by midazolam and lidocaine, but their efficacy is limited. Therefore, current evidence strongly suggests the use of alternative antiseizure medications. Randomized controlled trials of new drugs are ongoing. EXPERT OPINION : Therapy for neonatal seizures should be prompt and tailored, based on semeiology, mirror of the underlying cause, and cEEG features. Further research should focus on antiseizure medications that directly act on the etiopathogenetic mechanism responsible for seizures and are therefore more effective in seizure control.
Collapse
Affiliation(s)
- Isotta Guidotti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Ori
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Maria Federica Roversi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Elisa Della Casa Muttini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Bedetti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Marisa Pugliese
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Francesca Cavalleri
- Division of Neuroradiology, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino-Estense, Modena, Italy
| | - Francesca Stefanelli
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Alberto Berardi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| |
Collapse
|
4
|
Abstract
Electron transfer plays a vital role in drug metabolism and underlying toxicity mechanisms. Currently, pharmaceutical research relies on pharmacokinetics (PK) and absorption, distribution, metabolism, elimination and toxicity (ADMET) measurements to understand and predict drug reactions in the body. Metabolic stability (and toxicity) prediction in the early phases of the drug discovery and development process is key in identifying a suitable lead compound for optimisation. Voltammetric methods have the potential to overcome the significant barrier of new drug failure rates, by giving insight into phase I metabolism events which can have a direct bearing on the stability and toxicity of the parent drug being dosed. Herein, we report for the first time a data-mining investigation into the voltammetric behaviour of reported drug molecules and their correlation with metabolic stability (indirectly measured via t½), as a potential predictor of drug stability/toxicity in vivo. We observed an inverse relationship between oxidation potential and drug stability. Furthermore, we selected and prepared short- (<10 min) and longer-circulation (>2 h) drug molecules to prospectively survey the relationship between oxidation potential and stability.
Collapse
|
5
|
Exogenous Flupirtine as Potential Treatment for CLN3 Disease. Cells 2020; 9:cells9081872. [PMID: 32796515 PMCID: PMC7464162 DOI: 10.3390/cells9081872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
CLN3 disease is a fatal neurodegenerative disorder affecting children. Hallmarks include brain atrophy, accelerated neuronal apoptosis, and ceramide elevation. Treatment regimens are supportive, highlighting the importance of novel, disease-modifying drugs. Flupirtine and its new allyl carbamate derivative (compound 6) confer neuroprotective effects in CLN3-deficient cells. This study lays the groundwork for investigating beneficial effects in Cln3Δex7/8 mice. WT/Cln3Δex7/8 mice received flupirtine/compound 6/vehicle for 14 weeks. Short-term effect of flupirtine or compound 6 was tested using a battery of behavioral testing. For flupirtine, gene expression profiles, astrogliosis, and neuronal cell counts were determined. Flupirtine improved neurobehavioral parameters in open field, pole climbing, and Morris water maze tests in Cln3Δex7/8 mice. Several anti-apoptotic markers and ceramide synthesis/degradation enzymes expression was dysregulated in Cln3Δex7/8 mice. Flupirtine reduced astrogliosis in hippocampus and motor cortex of male and female Cln3Δex7/8 mice. Flupirtine increased neuronal cell counts in male mice. The newly synthesized compound 6 showed promising results in open field and pole climbing. In conclusion, flupirtine improved behavioral, neuropathological and biochemical parameters in Cln3Δex7/8 mice, paving the way for potential therapies for CLN3 disease.
Collapse
|
6
|
Effects of a potassium channel opener on brain injury and neurologic outcomes in an animal model of neonatal hypoxic-ischemic injury. Pediatr Res 2020; 88:202-208. [PMID: 31896131 PMCID: PMC7329576 DOI: 10.1038/s41390-019-0734-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI) is the most common cause of brain injury in newborns and the survivors often develop cognitive and sensorimotor disabilities that undermine the quality of life. In the current study, we examined the effectiveness of flupirtine, a potassium channel opener, shown previously in an animal model to have strong anti-neonatal-seizure efficacy, to provide neuroprotection and alleviate later-life disabilities caused by neonatal hypoxic-ischemic injury. METHODS The rats were treated with a single dose of flupirtine for 4 days following HI induction in 7-day-old rats. The first dose of flupirtine was given after the induction of HI and during the reperfusion period. The effect of treatment was examined on acute and chronic brain injury, motor functions, and cognitive abilities. RESULTS Flupirtine treatment significantly reduced HI-induced hippocampal and cortical tissue loss at acute time point. Furthermore, at chronic time point, flupirtine reduced contralateral hippocampal volume loss and partially reversed learning and memory impairments but failed to improve motor deficits. CONCLUSION The flupirtine treatment regimen used in the current study significantly reduced brain injury at acute time point in an animal model of neonatal hypoxic-ischemic encephalopathy. However, these neuroprotective effects were not persistent and only modest improvement in functional outcomes were observed at chronic time points.
Collapse
|
7
|
Hofstetter RK, Hasan M, Fassauer GM, Bock C, Surur AS, Behnisch S, Grathwol CW, Potlitz F, Oergel T, Siegmund W, Link A. Simultaneous quantification of acidic and basic flupirtine metabolites by supercritical fluid chromatography according to European Medicines Agency validation. J Chromatogr A 2019; 1603:338-347. [DOI: 10.1016/j.chroma.2019.04.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
8
|
Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M. Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discov Today 2019; 24:1166-1175. [PMID: 30898661 DOI: 10.1016/j.drudis.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
WHO classified neurological disorders to be among 6.3% of the global disease burden. Among the most central aspects of CNS drug development is the ability of novel molecules to cross the blood-brain barrier (BBB) to reach the target site over a desired time period for therapeutic action. Based on various aspects, brain pharmacokinetics is considered to be one of the foremost perspectives for the higher attrition rate of CNS biologics. Although drug traits are important, the BBB and blood-cerebrospinal fluid barrier together with transporters become the mechanistic approach behind CNS drug delivery. The present review emphasizes neuropharmacokinetic parameters, their importance, an assessment approach and the vast effect of transporters to brain drug distribution for CNS drug discovery.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Mohd Yaseen Malik
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun Agarwal
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sandeep K Singh
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|