1
|
Vinogradova TI, Serdobintsev MS, Korzhikova-Vlakh EG, Korzhikov-Vlakh VA, Kaftyrev AS, Blum NM, Semenova NY, Esmedlyaeva DS, Dyakova ME, Nashchekina YA, Dogonadze MZ, Zabolotnykh NV, Yablonsky PK. Comparison of Autografts and Biodegradable 3D-Printed Composite Scaffolds with Osteoconductive Properties for Tissue Regeneration in Bone Tuberculosis. Biomedicines 2023; 11:2229. [PMID: 37626725 PMCID: PMC10452435 DOI: 10.3390/biomedicines11082229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis remains one of the major health problems worldwide. Besides the lungs, tuberculosis affects other organs, including bones and joints. In the case of bone tuberculosis, current treatment protocols include necrectomy in combination with conventional anti-tuberculosis therapy, followed by reconstruction of the resulting bone defects. In this study, we compared autografting and implantation with a biodegradable composite scaffold for bone-defect regeneration in a tuberculosis rabbit model. Porous three-dimensional composite materials were prepared by 3D printing and consisted of poly(ε-caprolactone) filled with nanocrystalline cellulose modified with poly(glutamic acid). In addition, rabbit mesenchymal stem cells were adhered to the surface of the composite scaffolds. The developed tuberculosis model was verified by immunological subcutaneous test, real-time polymerase chain reaction, biochemical markers and histomorphological study. Infected animals were randomly divided into three groups, representing the infection control and two experimental groups subjected to necrectomy, anti-tuberculosis treatment, and plastic surgery using autografts or 3D-composite scaffolds. The lifetime observation of the experimental animals and analysis of various biochemical markers at different time periods allowed the comparison of the state of the animals between the groups. Micro-computed tomography and histomorphological analysis enabled the evaluation of osteogenesis, inflammation and cellular changes between the groups, respectively.
Collapse
Affiliation(s)
- Tatiana I. Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Mikhail S. Serdobintsev
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia;
| | - Viktor A. Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia;
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, St. Petersburg 199034, Russia
| | - Alexander S. Kaftyrev
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Natalya M. Blum
- Department of Pathological Anatomy, S.M. Kirov Military Medical Academy, Botkinskaya str. 21/2, St. Petersburg 194044, Russia;
| | - Natalya Yu. Semenova
- Interregional Medical Center, Oleko Dundich str. 8/2, St. Petersburg 192283, Russia;
| | - Dilyara S. Esmedlyaeva
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Marina E. Dyakova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Yulia A. Nashchekina
- Institute of Cytology, Russian Academy of Sciences, Tikhorezkii pr. 4, St. Petersburg 194064, Russia;
| | - Marine Z. Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Natalia V. Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| | - Petr K. Yablonsky
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation, Ligovskiy pr. 2–4, St. Petersburg 191036, Russia; (T.I.V.); (M.S.S.); (A.S.K.); (D.S.E.); (M.E.D.); (M.Z.D.); (N.V.Z.); (P.K.Y.)
| |
Collapse
|
2
|
Biswas B, Kumar Misra T, Ray D, Majumder T, Kanti Bandyopadhyay T, Kumar Bhowmick T. Current Therapeutic Delivery Approaches Using Nanocarriers for the Treatment of Tuberculosis Disease. Int J Pharm 2023; 640:123018. [PMID: 37149113 DOI: 10.1016/j.ijpharm.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.
Collapse
Affiliation(s)
- Bhabatush Biswas
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Tarun Kumar Misra
- Department of Chemistry, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Debasish Ray
- Agartala Govt. Medical College, Agartala, 799006, Tripura - 799006, India
| | - Tapan Majumder
- Agartala Govt. Medical College, Agartala, 799006, Tripura - 799006, India
| | - Tarun Kanti Bandyopadhyay
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura - 799046, India.
| |
Collapse
|
3
|
Clathrate Hydrates of Organic Solvents as Auxiliary Intermediates in Pharmaceutical Research and Development: Improving Dissolution Behaviour of a New Anti-Tuberculosis Drug, Perchlozon. Pharmaceutics 2022; 14:pharmaceutics14030495. [PMID: 35335870 PMCID: PMC8954777 DOI: 10.3390/pharmaceutics14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
There is an urgent need for new drugs to overcome the challenge of the ever-growing drug resistance towards tuberculosis. A new, highly efficient anti-tuberculosis drug, Perchlozone (thioureidoiminomethylpyridinium perchlorate, Pz), is only available in an oral dosage form, though injectable forms and inhalation solutions could be better alternatives, offering higher bioavailability. To produce such forms, nano- and micro-particles of APIs would need to be prepared as dispersions with carriers. We use this case study to illustrate the principles of selecting solvents and excipients when preparing such formulations. We justify the choice of water–THF (19.1 wt % THF) as solvent and mannitol as carrier to prepare formulations of Pz—a poorly soluble compound—that are suitable for injection or inhalation. The formulations could be prepared by conventional freeze-drying in vials, making the proposed method suitable for industrial scaling. A similar strategy for selecting the organic solvent and the excipient can be applied to other compounds with low water solubility.
Collapse
|
4
|
Sarkar K, Kumar M, Jha A, Bharti K, Das M, Mishra B. Nanocarriers for tuberculosis therapy: Design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Nabi B, Rehman S, Aggarwal S, Baboota S, Ali J. Nano-based anti-tubercular drug delivery: an emerging paradigm for improved therapeutic intervention. Drug Deliv Transl Res 2021; 10:1111-1121. [PMID: 32418158 PMCID: PMC7229880 DOI: 10.1007/s13346-020-00786-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) classified as one of the most fatal contagious diseases is of prime concern globally. Mycobacterium tuberculosis is the causative agent that ingresses within the host cells. The approved conventional regimen, though the only viable option available, is unfavorably impacting the quality of life of the affected individual. Despite newer antibiotics gaining light, there is an unending demand for more therapeutic alternatives. Therefore, substantial continuous endeavors are been undertaken to come up with novel strategies to curb the disease, the stepping stone being nanotechnology. This approach is instrumental in overcoming the anomalies associated with conventional therapy owing to their intriguing attributes and leads to optimization of the therapeutic effect to a certain extent. This review focusses on the different types of nanocarrier systems that are being currently explored by the researchers for the delivery of anti-tubercular drugs, the outcomes achieved by them, and their prospects. Graphical abstract ![]()
Collapse
Affiliation(s)
- Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
6
|
Polymer Particles Bearing Recombinant LEL CD81 as Trapping Systems for Hepatitis C Virus. Pharmaceutics 2021; 13:pharmaceutics13050672. [PMID: 34067169 PMCID: PMC8151308 DOI: 10.3390/pharmaceutics13050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C is one of the most common social diseases in the world. The improvements in both the early diagnostics of the hepatitis C and the treatment of acute viremia caused by hepatitis C virus are undoubtedly an urgent task. In present work, we offered the micro- and nanotraps for the capturing of HCV. As a capturing moiety, we designed and synthesized in E. coli a fusion protein consisting of large extracellular loop of CD81 receptor and streptavidin as spacing part. The obtained protein has been immobilized on the surface of PLA-based micro- and nanoparticles. The developed trapping systems were characterized in terms of their physico-chemical properties. In order to illustrate the ability of developed micro- and nanotraps to bind HCV, E2 core protein of HCV was synthesized as a fusion protein with GFP. Interaction of E2 protein and hepatitis C virus-mimicking particles with the developed trapping systems were testified by several methods.
Collapse
|
7
|
Baranyai Z, Soria‐Carrera H, Alleva M, Millán‐Placer AC, Lucía A, Martín‐Rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zsuzsa Baranyai
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Héctor Soria‐Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - Maria Alleva
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
| | - Ana C. Millán‐Placer
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Rafael Martín‐Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Departamento de Química Orgánica Facultad de Ciencias Universidad de Zaragoza Zaragoza 50009 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| | - José A. Aínsa
- Departamento de Microbiología, Facultad de Medicina Universidad de Zaragoza C/ Domingo Miral s/n Zaragoza 50009 Spain
- Instituto de Investigación Sanitaria Aragón (IIS‐Aragón) Zaragoza 50009 Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús M. la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC–Universidad de Zaragoza C/ Mariano Esquillor s/n Zaragoza 50018 Spain
- Biomateriales y Nanomedicina (CIBER‐BBN), Instituto de Salud Carlos III CIBER de Bioingeniería Madrid 28029 Spain
| |
Collapse
|
8
|
Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9100669. [PMID: 33022959 PMCID: PMC7601826 DOI: 10.3390/antibiotics9100669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Perchlozone ([PCZ] 4-thioureido-iminomethylpyridinium perchlorate) is a new thiosemicarbazone approved for the treatment of multidrug-resistant tuberculosis (MDR-TB) in Russia and some other countries. The ethA and hadABC mutations may confer PCZ resistance. At the same time, ethA mutations are known to mediate resistance to ethionamide (ETH) and prothionamide (PTH). We aimed to study the genetic variation underlying Mycobacterium tuberculosis resistance to PCZ through whole genome sequencing (WGS) of consecutive isolates recovered during long-term treatment. This prospective study included patients admitted in 2018–2019 to the regional tuberculosis dispensary, Kaliningrad, Russia, whose treatment regimen included PCZ. Multiple M. tuberculosis isolates were recovered during PCZ treatment, and the bacterial DNA was subjected to WGS followed by bioinformatics analysis. We identified mutations in the genes putatively associated with PCZ resistance, ethA, and hadA. The most frequent one was a frameshift ethA 106 GA > G (seven of nine patients) and most of the other mutations were also likely present before PCZ treatment. In one patient, a frameshift mutation ethA 702 CT > C emerged after six months of PCZ treatment. A frequent presence of cross-resistance mutations to PCZ and ETH/PTH should be taken into consideration when PCZ is included in the treatment regimen of MDR-TB patients.
Collapse
|
9
|
Semenkov V, Mikhalskii A, Sapoznikov A. Influence of heat shock proteins in individual sensitivity of human neutrophils to heat stress. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Semenkov V, Mikhalskii A, Sapoznikov A. Influence of heat shock proteins in individual sensitivity of human neutrophils to heat stress. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.2.38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|