1
|
Abdullah Z, Ashraf MU, Barkat K, Badshah SF, Rehman U, Razzaq A, Mahmood A, Ulhaq F, Chopra H, Rashid S, Valko M, Alomar S, Kuca K, Sharma R. Formulation of pH-responsive highly swellable hydrogel scaffolds for controlled release of tramadol HCl: characterization and biocompatibility evaluation. Front Bioeng Biotechnol 2023; 11:1190322. [PMID: 37304144 PMCID: PMC10250648 DOI: 10.3389/fbioe.2023.1190322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: The objective of current project was to formulate a system for controlled delivery of Tramadol HCl (TRD), an opioid analgesic used in the treatment of moderate to severe pain. Methods: For this purpose, a pH responsive AvT-co-poly hydrogel network was formulated through free radical polymerization by incorporating natural polymers i.e., aloe vera gel and tamarind gum, monomer and crosslinker. Formulated hydrogels were loaded with Tramadol HCl (TRD) and evaluated for percent drug loading, sol-gel fraction, dynamic and equilibrium swelling, morphological characteristics, structural features and in-vitro release of Tramadol HCl. Results and Discussions: Hydrogels were proved to be pH sensitive as remarkable dynamic swelling response ranging within 2.94g/g-10.81g/g was noticed at pH 7.4 as compared to pH 1.2. Percent drug loading was in the range of 70.28%-90.64% for all formulations. Thermal stability and compatibility of hydrogel components were validated by DSC analysis and FTIR spectroscopy. Controlled release pattern of Tramadol HCl from the polymeric network was confirmed as maximum release of 92.22% was observed for over a period of 24 hours at pH 7.4. Moreover, oral toxicity studies were also conducted in rabbits to investigate the safety of hydrogels. No evidence of any toxicity, lesions and degeneration was reported, confirming the biocompatibility and safety of grafted system.
Collapse
Affiliation(s)
| | | | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | | | - Umaira Rehman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Asma Razzaq
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal, Pakistan
| | - Farid Ulhaq
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Marian Valko
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Cattaneo L, Piccioli-Cappelli F, Minuti A, Trevisi E. Drying-off dairy cows without antibiotic therapy and orally supplemented with lyophilized Aloe arborescens: effects on rumen activity, immunometabolic profile, and milk yield. J Anim Physiol Anim Nutr (Berl) 2022; 107:794-807. [PMID: 36239181 DOI: 10.1111/jpn.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022]
Abstract
The drying-off is a stressful stage of the lactation cycle of dairy cows that deeply affects cows' metabolism, inflammatory status, and immune system. The promising effects observed during the transition period resulting from supplementation with Aloe arborescens Mill. suggest its potential utility during this phase. A group of 23 Holstein dairy cows with somatic cell count (SCC) less than 200 × 103 cells/ml and without intramammary infections were enroled in the study. Cows were divided into two groups: one orally receiving 10 g/day of A. arborescens Mill. lyophilized powder (AL; 11 cows) between -7 and 7 days from dry-off (DFD), and a control group (CTR; 12 cows). From -14 to 7 DFD and 7 and 28 days from calving, the body condition score and rectal temperature were determined, and rumen fluid, feces, milk, and blood samples were collected. Daily rumination times and milk yield were recorded. Data were analyzed through repeated measures mixed models. Compared to the CTR group, AL cows tended to show reduced production of volatile fatty acids in the rumen with acetate proportion that tended to be higher and valerate proportion that was lower. Moreover, Aloe supplementation caused a reduction in fecal dry matter. At the end of drying-off, AL cows presented better liver function, as suggested by higher paraoxonase plasma concentrations at 7 DFD, higher glucose, and lower urea, but showed increased reactive oxygen metabolites. Aloe supplementation at dry-off ameliorated inflammatory status after calving (lower haptoglobin and ceruloplasmin levels), and improved milk yield in the first weeks of subsequent lactation, without influencing milk composition, SCC, and incidence of intramammary infections. These results confirmed the positive effects of Aloe administration on liver function in dairy cows but indicate the need for further studies investigating the effects of Aloe on rumen fermentation profile and oxidative status.
Collapse
Affiliation(s)
- Luca Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fiorenzo Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Romeo and Enrica Invernizzi Research Centre for Sustainable Dairy Production (CREI), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
3
|
Bai J, Cai Y, Huang Z, Gu Y, Huang N, Sun R, Zhang G, Liu R. Shouhui Tongbian Capsule ameliorates constipation via gut microbiota-5-HT-intestinal motility axis. Biomed Pharmacother 2022; 154:113627. [PMID: 36058152 DOI: 10.1016/j.biopha.2022.113627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
Constipation has become an epidemic enteric medical problem, accompanied with increasing long-term sequelae. Gut microbiota and serotonin (5-HT) have been believed as predominant player in the treatment of constipation. In clinical practices, Shouhui Tongbian Capsule (SHTB) was found to effectively improve constipation symptoms and promote gastrointestinal motility. However, the specific mechanism of SHTB is not clearly elucidated. Our current study aims to explore the therapeutic effects of SHTB against the development of constipation and the underlying mechanisms related to gut bacterial and 5-HT. We established loperamide hydrochloride (LH)-induced experimental constipation mouse model to evaluate the effect of SHTB. 16S RNA sequencing, fecal microbiota transplants (FMT), high performance liquid chromatograph, and molecular biological analysis were performed to investigate the potential mechanisms of SHTB. Our data demonstrated that SHTB significantly ameliorated LH-induced experimental constipation and accelerated enteric motility via promoting 5-HT biosynthesis in enterochromaffin cells and enteric neuron growth of the enteric nervous system (ENS) in both the small intestine and colon. Additionally, SHTB significantly modulated gut microbiota dysbiosis and potentially altered microbiota metabolites to enhance intestinal 5-HT production. Finally, FMT study confirmed that the effects of SHTB on 5-HT production and constipation are dependent on modulating intestinal microbiota dysbiosis. In conclusion, our current study deciphered therapeutic mechanism of SHTB in the treatment of experimental constipation from perspectives of gut microbiota-5-HT-intetinal motility axis and provides novel insights into the appropriate and safe application of SHTB in the clinic.
Collapse
Affiliation(s)
- Jinzhao Bai
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China
| | - Yajie Cai
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China
| | - Zhiyan Huang
- Lunan Hope Pharmaceutical Co., Ltd., Linyi 276006, China; Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi 276006, China
| | - Yiqing Gu
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China
| | - Nana Huang
- The Second Hospital of Shandong University, Ji'nan 250033, China
| | - Rong Sun
- The Second Hospital of Shandong University, Ji'nan 250033, China.
| | - Guimin Zhang
- Lunan Hope Pharmaceutical Co., Ltd., Linyi 276006, China; Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi 276006, China.
| | - Runping Liu
- Beijing University of Chinese Medicine, School of Materia Medica, Beijing 100029, China.
| |
Collapse
|
4
|
Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:ijms23084339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
|
5
|
Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr Polym 2022; 282:119110. [DOI: 10.1016/j.carbpol.2022.119110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
6
|
Lippert A, Renner B. Herb-Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J Clin Med 2022; 11:1567. [PMID: 35329893 PMCID: PMC8951360 DOI: 10.3390/jcm11061567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Many people worldwide use plant preparations for medicinal purposes. Even in industrialized regions, such as Europe, where conventional therapies are accessible for the majority of patients, there is a growing interest in and usage of phytomedicine. Plant preparations are not only used as alternative treatment, but also combined with conventional drugs. These combinations deserve careful contemplation, as the complex mixtures of bioactive substances in plants show a potential for interactions. Induction of CYP enzymes and pGP by St John's wort may be the most famous example, but there is much more to consider. In this review, we shed light on what is known about the interactions between botanicals and drugs, in order to make practitioners aware of potential drug-related problems. The main focus of the article is the treatment of inflammatory diseases, accompanied by plant preparations used in Europe. Several of the drugs we discuss here, as basal medication in chronic inflammatory diseases (e.g., methotrexate, janus kinase inhibitors), are also used as oral tumor therapeutics.
Collapse
Affiliation(s)
- Annemarie Lippert
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany;
| | | |
Collapse
|
7
|
Sun X, Sheng Y, Li K, Sai S, Feng J, Li Y, Zhang J, Han J, Tian B. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater 2022; 138:193-207. [PMID: 34757228 DOI: 10.1016/j.actbio.2021.10.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022]
Abstract
Topical eye drops still face challenges of low-drug treatment effects and frequent dosing in ophthalmic applications due to the low preocular retention rate and low transcorneal permeability. Thus, we designed and synthesized a phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer (PBA-CS-VE) for use in mucoadhesive voriconazole (VRC)-loaded nanomicelles for fungal keratitis. In vitro mucin binding and ex vivo eyeball adhesion tests show that the copolymer has strong mucoadhesion. The transportation of coumarin-6 (C6) across a monolayer of HCE-T cells and 3D cell spheroids confirm the strong corneal penetration ability of PBA-CS-VE. The mechanism of promoting corneal penetration was studied in terms of intracellular calcium-ion concentration, cell membrane potential, cell membrane fluidity, and the tight junctions of cells. The pharmacokinetics in the aqueous humor were examined to evaluate the ability of nanomicelles in promoting corneal penetration and prolonging ocular retention. VRC-loaded PBA-CS-VE nanomicelles (PBA-CS-VE-VRC) yielded a very favorable therapeutic effect on a rabbit model of fungal keratitis in vivo as compared to the free drug. Overall, the results indicate that PBA-CS-VE nanomicelles are a mucoadhesive candidate with enhanced transcorneal permeability and prolonged preocular retention for efficient delivery of topical ocular drugs. STATEMENT OF SIGNIFICANCE: Although eye drops are widely used in ocular drug delivery, the disadvantages such as short retention time and weak corneal penetrating ability still seriously affect the therapeutic effect of the drug. Therefore, the mucoadhesive carrier seems to be an interesting strategy for ocular drug delivery. Herein, a novel phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer was designed and constructed as mucoadhesive nanomicelles loaded with voriconazole for fungal keratitis. These nanomicelles were able to improve the in vitro mucin binding and to prolong the residence time of the drug on the surface of the eyeball. Moreover, the nanomicelles exhibited an enhanced drug permeability in cell monolayer models and 3D cell culture models. This work provides a promising ocular drug delivery system.
Collapse
|
8
|
Le Phan TH, Park SY, Jung HJ, Kim MW, Cho E, Shim KS, Shin E, Yoon JH, Maeng HJ, Kang JH, Oh SH. The Role of Processed Aloe vera Gel in Intestinal Tight Junction: An In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms22126515. [PMID: 34204534 PMCID: PMC8235210 DOI: 10.3390/ijms22126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5–400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 μg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.
Collapse
Affiliation(s)
- Thu Han Le Phan
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (M.W.K.)
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Min Woo Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (S.Y.P.); (M.W.K.)
| | - Eunae Cho
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Kyu-Suk Shim
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Eunju Shin
- Univera Co., Ltd., Seoul 04782, Korea; (E.C.); (K.-S.S.); (E.S.)
| | - Jin-Ha Yoon
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
- Correspondence: (J.-H.K.); (S.H.O.); Tel./Fax: +82-32-820-4929 (S.H.O.)
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon 21936, Korea; (T.H.L.P.); (H.J.J.); (J.-H.Y.); (H.-J.M.)
- Correspondence: (J.-H.K.); (S.H.O.); Tel./Fax: +82-32-820-4929 (S.H.O.)
| |
Collapse
|
9
|
Promoting effect of the Maillard reaction products produced during the stir-frying process of Hordei Fructus Germinatus on the intestinal absorption of active ingredients in Hordei Fructus Germinatus. Food Sci Biotechnol 2021; 30:631-642. [PMID: 34123460 DOI: 10.1007/s10068-021-00911-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
This study was designed to evaluate the absorption promoting capacity of Maillard Reaction Products (MRPs) produced during the stir-frying process of Hordei Fructus Germinatus on catechin, ferulic acid, quercetin and kaempferol by the ex vivo rat everted gut sac model, in situ single-pass intestinal perfusion model and the whole animal model. Moreover, verapamil, EDTA and mannitol were used for determining the transport mechanism of catechin, ferulic acid, quercetin and kaempferol. The tight junction (TJ) proteins including zonula occudens-1(ZO-1) and claudin-1 were chosen to investigate the promoting mechanism of MRPs by quantitative real-time PCR (qRT-PCR) and western blot analyses. The results showed that the MRPs produced during the stir-frying process of Hordei Fructus Germinatus could improve the intestinal absorption of catechin, ferulic acid, quercetin and kaempferol. And the absorption-promoting effect of MRPs was related to chelating effect and the reduced expression of claudin-1 and ZO-1. Our results suggested that MRPs could be promising oral absorption promoters, which might be another processing mechanism of Hordei Fructus Germinatus.
Collapse
|
10
|
Yang Y, Hu N, Gao XJ, Li T, Yan ZX, Wang PP, Wei B, Li S, Zhang ZJ, Li SL, Yan R. Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113251. [PMID: 32810615 DOI: 10.1016/j.jep.2020.113251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Application of cyclosporine A (CsA) as a rescue treatment in acute severe ulcerative colitis (UC) is limited by its narrow therapeutic window and great interpatient variability. As a substrate of cytochrome P450 3A enzyme (CYP3A) and P-glycoprotein (P-gp), the oral pharmacokinetics of CsA is susceptible to disease status and concomitant medications. Combined treatment with ginseng, a famous medicinal herb frequently prescribed for ameliorating abnormal immune response in many diseases including UC, showed immunologic safety in CsA-based immunosuppression. AIM OF THE STUDY Since the therapeutic levels of CsA can be achieved within 24 h, this study first assessed the impact of acute colitis and ginseng intervention on the single oral dose pharmacokinetics of CsA and explored the underlying mechanisms in dextran sulfate sodium (DSS)-induced colitis rats and Caco-2 cells. MATERIALS AND METHODS Rats received drinking water (normal group), 5% DSS (UC group), or 5% DSS plus daily oral ginseng extract (GS+UC group). On day 7, GS+UC group only received an oral dose of CsA (5 mg/kg), while animals of normal or UC group received an oral, intravenous (1.25 mg/kg), or intraperitoneal dose of CsA (1.25 mg/kg), respectively. Blood, liver/intestine tissues and fecal samples were collected for determining CsA and main hydroxylated metabolite HO-CsA or measuring hepatic/intestinal CYP3A activity. Caco-2 cells were incubated with gut microbial culture supernatant (CS) of different groups or ginseng (decoction or polysaccharides), and then CYP3A, P-gp and tight junction (TJ) proteins were determined. RESULTS Oral CsA exhibited enhanced absorption, systemic exposure and tissue accumulation, and lower fecal excretion, while intravenous or intraperitoneal CsA showed lower systemic exposure and enhanced distribution, in colitis rats. Diminished intestinal and hepatic P-gp expression well explained the changes with DSS-induced colitis. Moreover, blood exposures of HO-CsA in both normal and colitis after oral dosing were significantly higher than intravenous/intraperitoneal dosing, supporting the dominant role of intestinal first-pass metabolism. Interestingly, colitis reduced CYP3A expression in intestine and liver but only potentiated intestinal CYP3A activity, causing higher oral systemic exposure of HO-CsA. Oral ginseng mitigated colitis-induced down-regulation of CYP3A and P-gp expression, facilitated HO-CsA production, biliary excretion and colonic sequestration of CsA, while not affected CsA oral systemic exposure. In Caco-2 cells, gut microbial CS from both colitis and GS+UC group diminished P-gp function, while ginseng polysaccharides directly affected ZO-1 distribution and suppressed TJ proteins expression, explaining unaltered oral CsA systemic exposure. CONCLUSIONS DSS-induced colitis significantly altered oral CsA disposition through regulating intestinal and hepatic P-gp and CYP3A. One-week ginseng treatment enhanced colonic accumulation while not altered the systemic exposure of CsA after single oral dosing, indicating pharmacokinetic compatibility between the two medications.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Xue-Jiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Zhi-Xiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Pan-Pan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China; Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080, China.
| |
Collapse
|
11
|
Mohammed L, Nourddine H, Saad EF, Abdelali D, Hamid R. Chitosan-covered liposomes as a promising drug transporter: nanoscale investigations. RSC Adv 2021; 11:1503-1516. [PMID: 35424127 PMCID: PMC8693526 DOI: 10.1039/d0ra08305d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023] Open
Abstract
Liposomes are small artificial vesicles spherical shaped of 50-1000 nm in diameter. They are created from natural non-toxic phospholipids membranes. Externally, they are decorated with biocompatible polymers. Chitosan, a natural polymer, demonstrates exceptional advantages in drug delivery, in particular, as liposome cover. In this paper, Molecular Dynamics simulations (MD) are performed in the coupled NPT-NPH and NVT-NVE statistical ensembles to study the static and dynamic properties of DPPC membrane-bilayer with grafted cationic chitosan chains, with added Cl- anions to neutralize the environment, using the Martini coarse-grained force-field. From the NPT-NPH MD simulations we found a chitosan layer L DM ranging from 3.2 to 6.6 nm for graft chains of a degree of polymerization n p = 45 and different grafting molar fractions X p = 0.005, X p = 0.014 and X p = 0.1. Also, the chitosan chains showed three essential grafting regimes: mushroom, critic, and brush depending on X p. The DPPC bilayer thickness D B and the area per lipid A l increased proportionally to X p. From the NVT-NVE MD simulations, the analysis of the radial distribution function showed that the increase of X p gives a more close-packed and rigid liposome. The analysis of the mean square displacement revealed that the diffusion of lipids is anomalous. In contrast, the diffusion of chitosan chains showed a normal diffusion, just after 100 ps. The diffusion regime of ions is found to be normal and independent of time. For the three identified regimes, the chitosan showed a tendency to adhere to the membrane surface and therefore affect the properties of the liposomal membrane.
Collapse
Affiliation(s)
- Lemaalem Mohammed
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Hadrioui Nourddine
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - El Fassi Saad
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Derouiche Abdelali
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| | - Ridouane Hamid
- Laboratoire de Physique des Polymères et Phénomènes Critiques Sciences, Faculty Ben M'Sik, Hassan II University P.O. Box 7955 Casablanca Morocco
| |
Collapse
|
12
|
Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020128. [PMID: 32028739 PMCID: PMC7076514 DOI: 10.3390/pharmaceutics12020128] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The systematic separation strategy has long and widely been applied in the research and development of herbal medicines. However, the pharmacological effects of many bioactive constituents are much weaker than those of the corresponding herbal extracts. Thus, there is a consensus that purer herbal extracts are sometimes less effective. Pharmacological loss of purified constituents is closely associated with their significantly reduced intestinal absorption after oral administration. In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines. Briefly, some coexisting constituents including plant-produced primary and secondary metabolites, promote the intestinal absorption of active constituents by improving solubility, inhibiting first-pass elimination mediated by drug-metabolizing enzymes or drug transporters, increasing the membrane permeability of enterocytes, and reversibly opening the paracellular tight junction between enterocytes. Moreover, some coexisting constituents change the forms of bioactive constituents via mechanisms including the formation of natural nanoparticles. This review will focus on explaining this new synergistic mechanism. Thus, herbal extracts can be considered mixtures of bioactive compounds and pharmacokinetic synergists. This review may provide ideas and strategies for further research and development of herbal medicines.
Collapse
|
13
|
Transmucosal Absorption Enhancers in the Drug Delivery Field. Pharmaceutics 2019; 11:pharmaceutics11070339. [PMID: 31311173 PMCID: PMC6680553 DOI: 10.3390/pharmaceutics11070339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/11/2023] Open
Abstract
Drug delivery systems that safely and consistently improve transport of poorly absorbed compounds across epithelial barriers are highly sought within the drug delivery field. The use of chemical permeation enhancers is one of the simplest and widely tested approaches to improve transmucosal permeability via oral, nasal, buccal, ocular and pulmonary routes. To date, only a small number of permeation enhancers have progressed to clinical trials, and only one product that includes a permeation enhancer has reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Transmucosal Absorption Enhancers in the Drug Delivery Field (https://www.mdpi.com/journal/pharmaceutics/special_issues/transmucosal_absorption_enhancers). The guest editors outline the scope of the issue, reflect on the results and the conclusions of the 19 articles published in the issue and provide an outlook on the use of permeation enhancers in the drug delivery field.
Collapse
|