1
|
Lee D, Shen AM, Garbuzenko OB, Minko T. Liposomal Formulations of Anti-Alzheimer Drugs and siRNA for Nose-to-Brain Delivery: Design, Safety and Efficacy In Vitro. AAPS J 2024; 26:99. [PMID: 39231845 DOI: 10.1208/s12248-024-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
β-site amyloid precursor protein cleaving enzyme (BACE1) represents a key target for Alzheimer's disease (AD) therapy because it is essential for producing the toxic amyloid β (Aβ) peptide that plays a crucial role in the disease's development. BACE1 inhibitors are a promising approach to reducing Aβ levels in the brain and preventing AD progression. However, systemic delivery of such inhibitors to the brain demonstrates limited efficacy because of the presence of the blood-brain barrier (BBB). Nose-to-brain (NtB) delivery has the potential to overcome this obstacle. Liposomal drug delivery systems offer several advantages over traditional methods for delivering drugs and nucleic acids from the nose to the brain. The current study aims to prepare, characterize, and evaluate in vitro liposomal forms of donepezil, memantine, BACE-1 siRNA, and their combination for possible treatment of AD via NtB delivery. All the liposomal formulations were prepared using the rotary evaporation method. Their cellular internalization, cytotoxicity, and the suppression of beta-amyloid plaque and other pro-inflammatory cytokine expressions were studied. The Calu-3 Transwell model was used as an in vitro system for mimicking the anatomical and physiological conditions of the nasal epithelium and studying the suitability of the proposed formulations for possible NtB delivery. The investigation results show that liposomes provided the effective intracellular delivery of therapeutics, the potential to overcome tight junctions in BBB, reduced beta-amyloid plaque accumulation and pro-inflammatory cytokine expression, supporting the therapeutic potential of our approach.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, the State University of New Jersey, 160 Frelinghuysen Road, Rutgers, Piscataway, NJ, 08854, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Science Institute, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Li B, Zhao M, Lai W, Zhang X, Yang B, Chen X, Ni Q. Activatable NIR-II Photothermal Lipid Nanoparticles for Improved Messenger RNA Delivery. Angew Chem Int Ed Engl 2023; 62:e202302676. [PMID: 37074038 DOI: 10.1002/anie.202302676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Endosomal escape remains a central issue limiting the high protein expression of mRNA therapeutics. Here, we present second near-infrared (NIR-II) lipid nanoparticles (LNPs) containing pH activatable NIR-II dye conjugated lipid (Cy-lipid) for potentiating mRNA delivery efficiency via a stimulus-responsive photothermal-promoted endosomal escape delivery (SPEED) strategy. In acidic endosomal microenvironment, Cy-lipid is protonated and turns on NIR-II absorption for light-to-heat transduction mediated by 1064 nm laser irradiation. Then, the heat-promoted LNPs morphology change triggers rapid escape of NIR-II LNPs from the endosome, allowing about 3-fold enhancement of enhanced green fluorescent protein (eGFP) encoding mRNA translation capacity compared to the NIR-II light free group. In addition, the bioluminescence intensity induced by delivered luciferase encoding mRNA in the mouse liver region shows positive correlation with incremental radiation dose, indicating the validity of the SPEED strategy.
Collapse
Affiliation(s)
- Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiping Lai
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai, 200433, China
| | - Xuanbo Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Bowei Yang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Qianqian Ni
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Centre for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
3
|
Zhou T, Wu L, Ma N, Tang F, Chen J, Jiang Z, Li Y, Ma T, Yang N, Zong Z. Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer. Bioeng Transl Med 2023; 8:e10368. [PMID: 36684111 PMCID: PMC9842049 DOI: 10.1002/btm2.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Near-infrared (NIR) photothermal therapy plays a critical role in the cancer treatment and diagnosis as a promising carcinoma treatment modalities nowadays. However, development of clinical application has been greatly limited due to the inefficient drug release and low tumor accumulation. Herein, we designed a NIR-light triggered indocyanine green (ICG)-based PCL core/P(MEO2MA-b-HMAM) shell nanocomposites (PPH@ICG) and evaluated their therapeutic effects in vitro and in vivo. The anticancer drug 5-fluorouracil (5Fu) and the photothermal agent ICG were loaded into a thermo-sensitive micelle (PPH@5Fu@ICG) by self-assembly. The nanoparticles formed were characterized using transmission electron microscopy, dynamic light scattering, and fluorescence spectra. The thermo-sensitive copolymer (PPH@5Fu@ICG) showed a great temperature-controlled drug release response with lower critical solution temperature. In vitro cellular uptake and TEM imaging proved that PPH@5Fu@ICG nanoparticles can home into the lysosomal compartments under NIR. Moreover, in gastric tumor-bearing nude mice, PPH@5Fu@ICG + NIR group exhibited excellent improvement in antitumor efficacy based on the NIR-triggered thermo-chemotherapy synergy, both in vitro and in vivo. In summary, the proposed strategy of synergistic photo-hyperthermia chemotherapy effectively reduced the 5Fu dose, toxic or side effect, which could serve as a secure and efficient approach for cancer theranostics.
Collapse
Affiliation(s)
- Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Lili Wu
- Department of Medical UltrasonicsThird Affiliated Hospital of Sun Yat‐sen University, Guangdong Key Laboratory of Liver Disease ResearchGuangzhouGuangdongChina
| | - Ning Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Fuxin Tang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jialin Chen
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Zhipeng Jiang
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Yingru Li
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Tao Ma
- Department of Gastroenterological Surgery and Hernia CenterThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Na Yang
- Department of Clinical LaboratoryGuangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Zhen Zong
- Department of Gastroenterological SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
4
|
Enzyme-sensitive nanoparticles, smart TAT and cetuximab conjugated immunoliposomes to overcome multidrug resistance in breast cancer cells. Toxicol Appl Pharmacol 2022; 441:115989. [DOI: 10.1016/j.taap.2022.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
|
5
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
6
|
Near-infrared light-responsive liposomes for protein delivery: Towards bleeding-free photothermally-assisted thrombolysis. J Control Release 2021; 337:212-223. [PMID: 34284049 DOI: 10.1016/j.jconrel.2021.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
Smart drug delivery systems represent state-of-the-art approaches for targeted therapy of life-threatening diseases such as cancer and cardiovascular diseases. Stimuli-responsive on-demand release of therapeutic agents at the diseased site can significantly limit serious adverse effects. In this study, we engineered a near-infrared (NIR) light-responsive liposomal gold nanorod-containing platform for on-demand delivery of proteins using a hybrid formulation of ultrasmall gold nanorods (AuNRs), thermosensitive phospholipid (DPPC) and non-ionic surfactant (Brij58). In light-triggered release optimization studies, 55.6% (± 4.8) of a FITC-labelled model protein, ovalbumin (MW 45 kDa) was released in 15 min upon NIR irradiation (785 nm, 1.35 W/cm2 for 5 min). This platform was then utilized to test on-demand delivery of urokinase-plasminogen activator (uPA) for bleeding-free photothermally-assisted thrombolysis, where the photothermal effect of AuNRs would synergize with the released uPA in clot lysis. Urokinase light-responsive liposomes showed 80.7% (± 4.5) lysis of an in vitro halo-clot model in 30 min following NIR irradiation (785 nm, 1.35 W/cm2 for 5 min) compared to 36.3% (± 4.4) and 15.5% (± 5.5) clot lysis from equivalent free uPA and non-irradiated liposomes respectively. These results show the potential of low-dose, site-specific thrombolysis via the combination of light-triggered delivery/release of uPA from liposomes combined with photothermal thrombolytic effects from gold nanorods. In conclusion, newly engineered, gold nanorod-based, NIR light-responsive liposomes represent a promising drug delivery system for site-directed, photothermally-stimulated therapeutic protein release.
Collapse
|
7
|
Delehedde C, Even L, Midoux P, Pichon C, Perche F. Intracellular Routing and Recognition of Lipid-Based mRNA Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13070945. [PMID: 34202584 PMCID: PMC8308975 DOI: 10.3390/pharmaceutics13070945] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Messenger RNA (mRNA) is being extensively used in gene therapy and vaccination due to its safety over DNA, in the following ways: its lack of integration risk, cytoplasmic expression, and transient expression compatible with fine regulations. However, clinical applications of mRNA are limited by its fast degradation by nucleases, and the activation of detrimental immune responses. Advances in mRNA applications, with the recent approval of COVID-19 vaccines, were fueled by optimization of the mRNA sequence and the development of mRNA delivery systems. Although delivery systems and mRNA sequence optimization have been abundantly reviewed, understanding of the intracellular processing of mRNA is mandatory to improve its applications. We will focus on lipid nanoparticles (LNPs) as they are the most advanced nanocarriers for the delivery of mRNA. Here, we will review how mRNA therapeutic potency can be affected by its interactions with cellular proteins and intracellular distribution.
Collapse
Affiliation(s)
- Christophe Delehedde
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Luc Even
- Sanofi R&D, Integrated Drug Discovery, 91385 Chilly-Mazarin, France;
| | - Patrick Midoux
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
| | - Chantal Pichon
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| | - Federico Perche
- Innovative Therapies & Nanomedicine, Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France; (C.D.); (P.M.)
- Correspondence: (C.P.); (F.P.); Tel.: +33-2-3825-5595 (C.P.); Tel.: +33-2-3825-5544 (F.P.)
| |
Collapse
|
8
|
Mastrobattista E. Formulation and delivery solutions for the next generation biotherapeutics. J Control Release 2021; 336:583-597. [PMID: 34174354 DOI: 10.1016/j.jconrel.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
In 2018 I was appointed full professor of Pharmaceutical Biotechnology & Delivery at the Pharmaceutics division of the department of Pharmaceutical Sciences at Utrecht University, The Netherlands. In this contribution to the Orations - New Horizons of the Journal of Controlled Release I will introduce my research group (see also www.uu.nl/pharmaceutics) and will highlight my current and future research projects. In coming years the focus of my research will be on the administration of biotherapeutics, aiming to control their fate from the site of injection to the site of action. I will discuss issues related to formulation of biotherapeutics into nanomedicines (NMs), intracellular delivery of nucleic acids as well as protein therapeutics, and targeted delivery of biotherapeutics beyond the liver. In addition, I will provide a forward view on how current developments in the drug delivery and gene therapy field may result in sustainable and cost-effective dosing regimens for biotherapeutics.
Collapse
Affiliation(s)
- Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
9
|
Nanogels Capable of Triggered Release. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This chapter provides an overview of soft and environmentally sensitive polymeric nanosystems, which are widely known as nanogels. These particles keep great promise to the area of drug delivery due to their high biocompatibility with body fluids and tissues, as well as due to their ability to encapsulate and release the loaded drugs in a controlled manner. For a long period of time, the controlled drug delivery systems were designed to provide long-termed or sustained release. However, some medical treatments such as cancer chemotherapy, protein and gene delivery do not require the prolonged release of the drug in the site of action. In contrast, the rapid increase of the drug concentration is needed for gaining the desired biological effect. Being very sensitive to surrounding media and different stimuli, nanogels can undergo physico-chemical transitions or chemical changes in their structure. Such changes can result in more rapid release of the drugs, which is usually referred to as triggered drug release. Herein we give the basic information on nanogel unique features, methods of sensitive nanogels preparation, as well as on main mechanisms of triggered release. Additionally, the triggered release of low-molecular drugs and biomacromolecules are discussed.
Collapse
|
10
|
Khan I, Yousaf S, Najlah M, Ahmed W, Elhissi A. Proliposome powder or tablets for generating inhalable liposomes using a medical nebulizer. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00495-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Purpose
The aim of this study was to develop and compare proliposome powder and proliposome tablet formulations for drug delivery from a Pari-LC Sprint nebulizer.
Methods
Proliposome powders were prepared by the slurry method and sorbitol or mannitol carbohydrate carrier were used in a 1:10 and 1:15 w/w lipid phase to carrier ratio. Beclometasone dipropionate (BDP; 2 mol%) was incorporated in the lipid phase. Proliposome powders were compressed into tablets, and liposomes were generated from proliposome powders or tablets within the nebulizer reservoir for subsequent aerosolization.
Results
Comparatively, shorter sputtering times were reported for the tablet formulations (≈ < 2.7±0.45 min), indicating uniform aerosolization. Post-nebulization, liposomes size was larger in the nebulizer reservoir in the range of 7.79±0.48 µm–9.73±1.53 µm for both powder and tablet formulations as compared to freshly prepared liposomes (5.38±0.73 µm–5.85±0.86 µm), suggesting liposome aggregation/fusion in the nebulizer’s reservoir. All formulations exhibited more than 80% mass output regardless of formulation type, but greater BDP proportions (circa 50%) were delivered to the Two-stage Impinger when tablet formulations were used. Moreover, the nebulized droplet median size and size distribution were lower for all tablet formulations in comparison to the powder formulations. Proliposome tablet and powdered formulations demonstrated the ability to generate vesicles that sustained the release of BDP.
Conclusion
Overall, this study showed that proliposome tablets could be disintegrated within a Pari-LC Sprint nebulizer to generate inhalable aerosol, with high drug output and hence can be manufactured on large scale to overcome the storage problems associated with powder formulations.
Collapse
|
11
|
Wu D, Zhao Z, Wang N, Zhang X, Yan H, Chen X, Fan Y, Liu W, Liu X. Fluorescence imaging-guided multifunctional liposomes for tumor-specific phototherapy for laryngeal carcinoma. Biomater Sci 2020; 8:3443-3453. [PMID: 32412569 DOI: 10.1039/d0bm00249f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Reliable diagnosis and efficient targeted therapy are important and may lead to the effective treatment of laryngeal carcinoma. Multifunctional nano-theranostic agents demonstrate great potential in tumor theranostic applications. Thus, herein, we report novel targeting multifunctional theranostic nanoparticles, internalized RGD (iRGD)-modified indocyanine green (ICG) encapsulated liposomes (iLIPICG), for imaging-guided photothermal therapy (PTT) and photodynamic therapy (PDT) for the treatment of laryngeal carcinoma. The iRGD-PEG-DSPE lipid endowed iLIPICG with high affinity for tumor vascular targeting, tumor-penetration and tumor cell targeting. The in vivo results showed that iLIPICG exhibited excellent blood circulation and tumor accumulation. iLIPICG could be spatially and temporally controlled, simultaneously producing hyperthermia and reactive oxygen species as well as a fluorescence-guided effect through ICG to ablate laryngeal carcinoma cells under irradiation from an 808 nm laser. iLIPICG generated synergistic photodynamic-photothermal cytotoxicity against Hep-2 cells, resulting in the efficient ablation of laryngeal carcinoma. Thus, the iLIPICG system provides a promising strategy to improve the precision imaging and effective phototherapy for the treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Photosensitive Poly-l-lysine/Heparin Interpolyelectrolyte Complexes for Delivery of Genetic Drugs. Polymers (Basel) 2020; 12:polym12051077. [PMID: 32397208 PMCID: PMC7285230 DOI: 10.3390/polym12051077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Photo-triggered release of biopharmaceutical drugs inside the cells is a challenging direction of modern science, which requires obtaining new polymeric systems. The interpolyelectrolyte complexes (IPECs) of poly-l-lysine with heparin capable of encapsulation of genetic constructions—such as model oligonucleotide, siRNA, and pDNA—were obtained. Poly-l-lysine to heparin ratios were optimized to provide the appropriate release kinetics of genetic material from the polyplex. In order to impart the obtained IPEC with photosensitive properties, the linker was synthesized as based on 4-brommethyl-3-nitrobenzoic acid. The conditions and kinetics of photosensitive linker destruction were carefully studied. The colloid particles of IPEC were modified with Cy3 probe and their cellular internalization was investigated by flow cytometry method. The efficacy of photosensitive IPECs as siRNA and pDNA delivery system was evaluated.
Collapse
|
13
|
Jin X, Lu X, Zhang Z, Lv H. Indocyanine Green-Parthenolide Thermosensitive Liposome Combination Treatment for Triple-Negative Breast Cancer. Int J Nanomedicine 2020; 15:3193-3206. [PMID: 32440118 PMCID: PMC7211433 DOI: 10.2147/ijn.s245289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Certain patients with triple-negative breast cancer cannot tolerate the serious adverse effects of cytotoxic chemotherapy agents, which significantly affect the disease prognosis. Purpose Research into the combined use of photosensitizers and non-cytotoxic antineoplastic drugs for the safe treatment of triple-negative breast cancer is vital. Methods In this study, the photosensitizer indocyanine green and the natural drug parthenolide were co-loaded into thermosensitive liposomes. Under a near-infrared irradiation, indocyanine green reached excitation levels, releasing heat, and the liposome underwent a phase transition, releasing the drug were researched. Results Thus, indocyanine green and parthenolide exert synergistic antineoplastic effects. In the nude mice xenograft MDA-MB-231 tumor model, the tumor inhibition rate of indocyanine green-parthenolide thermosensitive liposomes was approximately 2.08-fold than that of paclitaxel and demonstrated a good initial safety evaluation. Conclusion Photosensitizers and non-cytotoxic antineoplastic agents in combination with nanoscale carriers should be further investigated for the treatment of tumors.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hospital Pharmacy, Suqian First Hospital, Suqian 223800, People's Republic of China.,Department of Pharmaceutics, Suqian Clinical College of Xuzhou Medical University, Suqian 223800, People's Republic of China
| | - Xinyue Lu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhenhai Zhang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing 210000, People's Republic of China
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
14
|
Lamberti G, Barba AA. Drug Delivery of siRNA Therapeutics. Pharmaceutics 2020; 12:pharmaceutics12020178. [PMID: 32093141 PMCID: PMC7076510 DOI: 10.3390/pharmaceutics12020178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gaetano Lamberti
- Eng4Life Srl, Spin-off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy;
- Dipartimento di Ingegneria Industriale; Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Anna Angela Barba
- Eng4Life Srl, Spin-off Accademico, Via Fiorentino, 32, 83100 Avellino, Italy;
- Dipartimento di Farmacia; Università degli Studi di Salerno, via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
- Correspondence:
| |
Collapse
|
15
|
Elkholy NS, Shafaa MW, Mohammed HS. Biophysical characterization of lutein or beta carotene-loaded cationic liposomes. RSC Adv 2020; 10:32409-32422. [PMID: 35685615 PMCID: PMC9127840 DOI: 10.1039/d0ra05683a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action. Lutein and beta-carotene were loaded separately into the bilayer of dipalmitoylphosphatidylcholine (DPPC) mixed at a molar ratio with l-α-phosphatidylethanolamine derived from sheep brain (cephalin) and stearylamine (SA) to form cationic liposomes. The molecular interaction between lutein or beta-carotene with cationic liposomes was studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. Encapsulation efficiency (EE %) and in vitro drug release were determined. The DLS measurements confirmed the mono-dispersity of all samples. TEM results revealed that liposomal samples were oval-shaped and there was a change in their morphology and size upon encapsulation of lutein or beta-carotene. Beta-carotene was observed to adhere to the boundary surface within the liposomal assembly with external morphological alterations. EE% of lutein and beta-carotene exceeded 98.8 ± 0.3% and 87 ± 4%, respectively. Lutein doped with cationic liposomes shows better in vitro release stability (about 30%) than beta-carotene (about 45%) between the 3rd and the 6th hour manifested by lower leakage rate percentage of lutein which would lead to higher lutein retention. The incorporated lutein resulted in broadening and shifting of the major endothermic peak of the co-liposomes, while the incorporation of beta-carotene did not induce a noticeable shift. An FTIR study was employed to reveal structure alterations in the vesicles after the encapsulation of lutein or beta-carotene into liposomes. Encapsulation of lutein or beta-carotene into liposomes induced a change in the frequency of the symmetric and asymmetric CH2 stretching bands in the acyl chain that may influence the order of the membrane. The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action.![]()
Collapse
Affiliation(s)
- Nourhan S. Elkholy
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | - Medhat W. Shafaa
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | | |
Collapse
|
16
|
Wu B, Fu J, Zhou Y, Wang J, Feng X, Zhao Y, Zhou G, Lu C, Quan G, Pan X, Wu C. Metal-Organic Framework-Based Chemo-Photothermal Combinational System for Precise, Rapid, and Efficient Antibacterial Therapeutics. Pharmaceutics 2019; 11:E463. [PMID: 31500157 PMCID: PMC6781304 DOI: 10.3390/pharmaceutics11090463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Rapid increase of antimicrobial resistance has become an urgent threat to global public health. In this research, since photothermal therapy is a potential antibacterial strategy, which is less likely to cause resistance, a metal-organic framework-based chemo-photothermal combinational system was constructed. Zeolitic imidazolate frameworks-8 (ZIF-8), a porous carrier with unique features such as high loading and pH-sensitive degradation, was synthesized, and then encapsulated photothermal agent indocyanine green (ICG). First, ICG with improved stability in ZIF-8 (ZIF-8-ICG) can effectively produce heat in response to NIR laser irradiation for precise, rapid, and efficient photothermal bacterial ablation. Meanwhile, Zn2+ ions released from ZIF-8 can inhibit bacterial growth by increasing the permeability of bacterial cell membrane and further strengthen photothermal therapy efficacy by reducing the heat resistance of bacteria. Study showed that bacteria suffered from significant changes in morphology after treatment with ZIF-8-ICG under laser irradiation. The combinational chemo-hyperthermia therapy of ZIF-8-ICG could thoroughly ablate murine subcutaneous abscess induced by methicillin-resistant Staphylococcus aureus (MRSA), exhibiting a nearly 100% bactericidal ratio. Both in vitro and in vivo safety evaluation confirmed that ZIF-8-ICG was low toxic. Overall, our researches demonstrated that ZIF-8-ICG has great potential to be served as an alternative to antibiotics in combating multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Biyuan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guiling Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|