1
|
de Carvalho ACW, Paiva NF, Demonari IK, Duarte MPF, do Couto RO, de Freitas O, Vicentini FTMDC. The Potential of Films as Transmucosal Drug Delivery Systems. Pharmaceutics 2023; 15:2583. [PMID: 38004562 PMCID: PMC10675688 DOI: 10.3390/pharmaceutics15112583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Pharmaceutical films are polymeric formulations used as a delivery platform for administration of small and macromolecular drugs for local or systemic action. They can be produced by using synthetic, semi-synthetic, or natural polymers through solvent casting, electrospinning, hot-melt extrusion, and 3D printing methods, and depending on the components and the manufacturing methods used, the films allow the modulation of drug release. Moreover, they have advantages that have drawn interest in the development and evaluation of film application on the buccal, nasal, vaginal, and ocular mucosa. This review aims to provide an overview of and critically discuss the use of films as transmucosal drug delivery systems. For this, aspects such as the composition of these formulations, the theories of mucoadhesion, and the methods of production were deeply considered, and an analysis of the main transmucosal pathways for which there are examples of developed films was conducted. All of this allowed us to point out the most relevant characteristics and opportunities that deserve to be taken into account in the use of films as transmucosal drug delivery systems.
Collapse
Affiliation(s)
- Ana Clara Wada de Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Natália Floriano Paiva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Isabella Kriunas Demonari
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Maíra Peres Ferreira Duarte
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | - Renê Oliveira do Couto
- Campus Centro-Oeste Dona Lindu (CCO), Universidade Federal de São João del-Rei (UFSJ), Divinópolis 35501-296, MG, Brazil
| | - Osvaldo de Freitas
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil. Av. Café, Ribeirão Preto 14048-900, SP, Brazil; (A.C.W.d.C.)
| | | |
Collapse
|
2
|
Aceves-Franco LA, Sanchez-Aguilar OE, Barragan-Arias AR, Ponce-Gallegos MA, Navarro-Partida J, Santos A. The Evolution of Triamcinolone Acetonide Therapeutic Use in Retinal Diseases: From Off-Label Intravitreal Injection to Advanced Nano-Drug Delivery Systems. Biomedicines 2023; 11:1901. [PMID: 37509540 PMCID: PMC10377205 DOI: 10.3390/biomedicines11071901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Ophthalmic drug delivery to the posterior segment of the eye has been challenging due to the complex ocular anatomy. Intravitreal injection of drugs was introduced to deliver therapeutic doses in the posterior segment. Different posterior segment diseases including age-related macular degeneration, diabetic macular edema, retinal vein occlusions, uveitis, and cystoid macular edema, among others, have been historically treated with intravitreal corticosteroids injections, and more recently with intravitreal corticosteroids drug implants. Triamcinolone acetonide (TA) is the most frequently used intraocular synthetic corticosteroid. Using nanoparticle-based TA delivery systems has been proposed as an alternative to intravitreal injections in the treatment of posterior segment diseases. From these novel delivery systems, topical liposomes have been the most promising strategy. This review is oriented to exhibit triamcinolone acetonide drug evolution and its results in treating posterior segment diseases using diverse delivery platforms.
Collapse
Affiliation(s)
- Luis Abraham Aceves-Franco
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Oscar Eduardo Sanchez-Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | | | | | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64849, Nuevo Leon, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Centro Medico Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
3
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
4
|
Wu Y, Vora LK, Mishra D, Adrianto MF, Gade S, Paredes AJ, Donnelly RF, Singh TRR. Nanosuspension-loaded dissolving bilayer microneedles for hydrophobic drug delivery to the posterior segment of the eye. BIOMATERIALS ADVANCES 2022; 137:212767. [PMID: 35929230 DOI: 10.1016/j.bioadv.2022.212767] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Intravitreal injections (IVT) are regarded as the gold standard for effective delivery of hydrophobic drugs to the back of the eye. However, as a highly invasive procedure, the injection itself may lead to poor patient compliance and severe complications. In this research work, a hybrid system of nanosuspensions (NS) and dissolving microneedles (MNs) was developed as an alternative to conventional hypodermic needles used in IVT for minimally invasive transscleral delivery of hydrophobic drugs. NS of a hydrophobic drug, triamcinolone acetonide (TA), were fabricated using a wet milling technique. TA NS optimised by central composite factorial design had a proven diameter of 246.65 ± 8.55 nm. After optimisation, TA NS were incorporated into MN arrays to form a bilayer structure by high-speed centrifugation. TA NS-loaded MNs were robust enough to pierce excised porcine sclera with insertion depth higher than 80% of the needle height and showed rapid dissolution (<3 min). In contrast, the plain TA-loaded MNs exhibited poor mechanical and insertion performances and took more than 8 min to be fully dissolved in the scleral tissue. Importantly, transscleral deposition studies showed that 56.46 ± 7.76 μg/mm2 of TA was deposited into the sclera after 5 min of NS-loaded MN application, which was 4.5-fold higher than plain drug-loaded MNs (12.56 ± 2.59 μg/mm2). An ex vivo distribution study revealed that MN arrays could promote the transscleral penetration of hydrophobic molecules with higher drug concentrations observed in the deep layer of the sclera. Moreover, the developed TA NS-loaded MN array was biocompatible with ocular tissues, as demonstrated using the hens egg-chorioallantoic membrane assay and cytotoxicity test. The results presented here demonstrate that the hybrid system of NS and dissolving MNs can provide a novel and promising technology to alleviate retinal diseases in a therapeutically effective and minimally invasive manner.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - Shilpkala Gade
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur Raghu Raj Singh
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
5
|
Thakkar R, Komanduri N, Dudhipala N, Tripathi S, Repka MA, Majumdar S. Development and optimization of hot-melt extruded moxifloxacin hydrochloride inserts, for ocular applications, using the design of experiments. Int J Pharm 2021; 603:120676. [PMID: 33961956 DOI: 10.1016/j.ijpharm.2021.120676] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/18/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
The current study sought to formulate sustained-release hot-melt extruded (HME) ocular inserts of moxifloxacin hydrochloride (MOX; MOX-HME) for the treatment of bacterial keratitis. The concentration of Eudragit™ FS-100 (FS) and propylene glycol (PG) used as polymer and plasticizer, respectively, in the inserts were optimized using the central composite design (CCD) to achieve sustained release. The inserts were characterized for weight, thickness, surface characteristics, pH, and in vitro release profile. The crystalline characteristics of MOX and surface morphology of the inserts were evaluated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Furthermore, ex vivo permeation through rabbit cornea and stability of the optimized MOX-HME insert was investigated. The results demonstrate an inverse correlation between FS concentration and MOX release from the MOX-HME inserts, and a potential 24 h release. The optimized MOX-HME inserts were found to be stable at room temperature for four months, showing no significant change in drug content, pH and release profile. MOX converted into an amorphous form in the MOX-HME inserts and did not recrystallize during the study period. SEM analysis confirmed the smooth surface of the MOX-HME insert. The ex vivo studies revealed that the MOX-HME inserts provided a much prolonged transcorneal MOX flux as compared to the commercial ophthalmic solution and the immediate-release MOX-HME insert. The results indicate that MOX-HME inserts could potentially provide a once-a-day application, consequently reducing the dosing frequency and acting as an alternative delivery system in the management of bacterial infections.
Collapse
Affiliation(s)
- Ruchi Thakkar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Neeraja Komanduri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| | - Siddharth Tripathi
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA; National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Youssef AAA, Cai C, Dudhipala N, Majumdar S. Design of Topical Ocular Ciprofloxacin Nanoemulsion for the Management of Bacterial Keratitis. Pharmaceuticals (Basel) 2021; 14:210. [PMID: 33802394 PMCID: PMC7998883 DOI: 10.3390/ph14030210] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial keratitis (BK) is a critical ocular infection that can lead to serious visual disability. Ciprofloxacin (CIP), moxifloxacin (MOX), and levofloxacin (LFX) have been accepted as monotherapies by the US Food and Drug Administration for BK treatment. CIP is available commercially at 0.3% w/v concentration as an ophthalmic solution and as an ointment for ocular delivery. Because of solubility issues at physiological pH, CIP precipitation can occur at the corneal surface post instillation of the solution dosage form. Consequently, the ocular bioavailability of CIP is reduced. The ointment dosage form is associated with side effects such as blurred vision, itching, redness, eye discomfort, and eye dryness. This study aimed to design a CIP loaded nanoemulsion (NE; CIP-NE) to facilitate drug penetration into the corneal layers for improved therapeutic outcomes as well as to overcome the drawbacks of the current commercial ophthalmic formulations. CIP-NE formulations were prepared by hot homogenization and ultrasonication, using oleic acid (CIP-O-NE) and Labrafac® Lipophile WL 1349 (CIP-L-NE) as the oily phase, and Tween® 80 and Poloxamer 188 as surfactants. Optimized CIP-NE was further evaluated with respect to in vitro release, ex vivo transcorneal permeation, and moist heat sterilization process, using commercial CIP ophthalmic solution as a control. Optimized CIP-O-NE formulation showed a globule size, polydispersity index, and zeta potential of 121.6 ± 1.5 nm, 0.13 ± 0.01, and -35.1 ± 2.1 mV, respectively, with 100.1 ± 2.0% drug content and was spherical in shape. In vitro release and ex vivo transcorneal permeation studies exhibited sustained release and a 2.1-fold permeation enhancement, respectively, compared with commercial CIP ophthalmic solution. Autoclaved CIP-O-NE formulation was found to be stable for one month (last time-point tested) at refrigerated and room temperature. Therefore, CIP-NE formulation could serve as an effective delivery system for CIP and could improve treatment outcomes in BK.
Collapse
Affiliation(s)
- Ahmed Adel Ali Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Chuntian Cai
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
7
|
Ciprofloxacin self-dissolvable Soluplus based polymeric films: a novel proposal to improve the management of eye infections. Drug Deliv Transl Res 2021; 11:608-625. [PMID: 33528829 PMCID: PMC7852484 DOI: 10.1007/s13346-020-00887-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Infections of the eye are among the leading causes of vision impairment and vision loss worldwide. The ability of a drug to access the anterior parts of the eye is negligible after systemic administration. Effective drug delivery to the eye is a major challenge due to the presence of protective mechanisms and physiological barriers that result in low ocular availability after topical application. The main purpose of this work was the improvement of the corneal and conjunctival permeation of the antibiotic Ciprofloxacin, a wide spectrum antibiotic used for the most common eye infection, using a self-dissolving polymeric film. Films were prepared by the solvent casting technique, using polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft co-polymer (Soluplus), polyvynyl alcohol, and propylene glycol. Films were homogeneous in drug content and thickness, as demonstrated by adapting the Swiss Roll technique followed by microscopy observation. These films proved in vitro to control the release of the Ciprofloxacin. Ex vivo permeability studies using Franz diffusion cells and porcine cornea and sclera showed an effective permeability of the drug without inducing irritation of the tissues. Films swelled in contact with artificial tears forming an in situ gel over 20 min, which will improve drug contact and reduce the need of multiple dosing. The antibiotic activity was also tested in vitro in five types of bacterial cultures, assuring the pharmacological efficacy of the films. The developed films are a promising drug delivery system to topically treat or prevent ocular infections.
Collapse
|
8
|
Youssef A, Dudhipala N, Majumdar S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics 2020; 12:E572. [PMID: 32575524 PMCID: PMC7356176 DOI: 10.3390/pharmaceutics12060572] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial endophthalmitis (BE) is a potentially sight-threatening inflammatory reaction of the intraocular fluids or tissues caused by bacteria. Ciprofloxacin (CIP) eye drops are prescribed as first-line therapy in BE. However, frequent administration is necessary due to precorneal loss and poor ocular bioavailability. The objective of the current research was to prepare CIP containing nanostructured lipid carriers (CIP-NLCs) loaded an in situ gel system (CIP-NLC-IG) for topical ocular administration for enhanced and sustained antibacterial activity in BE treatment. CIP-NLCs were prepared by the hot homogenization method and optimized based on physicochemical characteristics and physical stability. The optimized CIP-NLC formulation was converted into CIP-NLC-IG with the addition of gellan gum as a gelling agent. Furthermore, optimized CIP-NLC and CIP-NLC-IG were evaluated for in vitro release and ex vivo transcorneal permeation studies, using commercial CIP ophthalmic solution (CIP-C) as the control. The optimized CIP-NLC formulation showed particle size, polydispersity index, zeta potential, assay and entrapment efficiency of 193.1 ± 5.1 nm, 0.43 ± 0.01, -32.5 ± 1.5 mV, 99.5 ± 5.5 and 96.3 ± 2.5%, respectively. CIP-NLC-IG with 0.2% w/v gellan gum showed optimal viscoelastic characteristics. The in vitro release studies demonstrated sustained release of CIP from CIP-NLC and CIP-NLC-IG formulations over a 24 h period. Transcorneal flux and permeability increased 4 and 3.5-fold, and 2.2 and 1.9-fold from CIP-NLC and CIP-NLC-IG formulations, respectively, when compared to CIP-C. The results demonstrate that CIP-NLC-IG could be considered as an alternate delivery system to prolong the residence time on the ocular surface after topical administration. Thus, the current CIP ophthalmic formulations may exhibit improved ocular bioavailability and prolonged antibacterial activity, which may improve therapeutic outcomes in the treatment of BE.
Collapse
Affiliation(s)
- Ahmed Youssef
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|