1
|
David TI, Pestov NB, Korneenko TV, Barlev NA. Non-Immunoglobulin Synthetic Binding Proteins for Oncology. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1232-1247. [PMID: 37770391 DOI: 10.1134/s0006297923090043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Extensive application of technologies like phage display in screening peptide and protein combinatorial libraries has not only facilitated creation of new recombinant antibodies but has also significantly enriched repertoire of the protein binders that have polypeptide scaffolds without homology to immunoglobulins. These innovative synthetic binding protein (SBP) platforms have grown in number and now encompass monobodies/adnectins, DARPins, lipocalins/anticalins, and a variety of miniproteins such as affibodies and knottins, among others. They serve as versatile modules for developing complex affinity tools that hold promise in both diagnostic and therapeutic settings. An optimal scaffold typically has low molecular weight, minimal immunogenicity, and demonstrates resistance against various challenging conditions, including proteolysis - making it potentially suitable for peroral administration. Retaining functionality under reducing intracellular milieu is also advantageous. However, paramount to its functionality is the scaffold's ability to tolerate mutations across numerous positions, allowing for the formation of a sufficiently large target binding region. This is achieved through the library construction, screening, and subsequent expression in an appropriate system. Scaffolds that exhibit high thermodynamic stability are especially coveted by the developers of new SBPs. These are steadily making their way into clinical settings, notably as antagonists of oncoproteins in signaling pathways. This review surveys the diverse landscape of SBPs, placing particular emphasis on the inhibitors targeting the oncoprotein KRAS, and highlights groundbreaking opportunities for SBPs in oncology.
Collapse
Affiliation(s)
- Temitope I David
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nikolay B Pestov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Tatyana V Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nikolai A Barlev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Institute of Cytology Russian Academy of Sciences, St.-Petersburg, 194064, Russia
- School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
2
|
Miri A, Gharechahi J, Samiei Mosleh I, Sharifi K, Jajarmi V. Identification of co-regulated genes associated with doxorubicin resistance in the MCF-7/ADR cancer cell line. Front Oncol 2023; 13:1135836. [PMID: 37397367 PMCID: PMC10311417 DOI: 10.3389/fonc.2023.1135836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The molecular mechanism of chemotherapy resistance in breast cancer is not well understood. The identification of genes associated with chemoresistance is critical for a better understanding of the molecular processes driving resistance. Methods This study used a co-expression network analysis of Adriamycin (or doxorubicin)-resistant MCF-7 (MCF-7/ADR) and its parent MCF-7 cell lines to explore the mechanisms of drug resistance in breast cancer. Genes associated with doxorubicin resistance were extracted from two microarray datasets (GSE24460 and GSE76540) obtained from the Gene Expression Omnibus (GEO) database using the GEO2R web tool. The candidate differentially expressed genes (DEGs) with the highest degree and/or betweenness in the co-expression network were selected for further analysis. The expression of major DEGs was validated experimentally using qRT-PCR. Results We identified twelve DEGs in MCF-7/ADR compared with its parent MCF-7 cell line, including 10 upregulated and 2 downregulated DEGs. Functional enrichment suggests a key role for RNA binding by IGF2BPs and epithelial-to-mesenchymal transition pathways in drug resistance in breast cancer. Discussion Our findings suggested that MMP1, VIM, CNN3, LDHB, NEFH, PLS3, AKAP12, TCEAL2, and ABCB1 genes play an important role in doxorubicin resistance and could be targeted for developing novel therapies by chemical synthesis approaches.
Collapse
Affiliation(s)
- Ali Miri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Iman Samiei Mosleh
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Park J, Kim S, Hong J, Jeon JS. Enabling perfusion through multicellular tumor spheroids promoting lumenization in a vascularized cancer model. LAB ON A CHIP 2022; 22:4335-4348. [PMID: 36226506 DOI: 10.1039/d2lc00597b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A tumor is composed of heterogeneous cell population, which is known as tumor stroma. In particular, blood vessels have an indispensable role in the tumor microenvironment acting as a key player in anti-cancer drug delivery. Recently, efforts have been made to accurately recapitulate the microenvironment by employing distinct cell types, however, the proper formation of perfusable tumor tissue is challenging. Here, perfusable tumor tissue is engineered by implanting multicellular tumor spheroids inside the microfluidic devices. Blood perfusion, spheroid growth, and vascular dynamics were monitored according to the spheroid composition and the contribution of internal and external vascular cells to spheroid perfusion was analyzed. Most notably, the increased penetration depth of fluorescence conjugated anti-cancer drug was observed in tri-culture spheroids. The implementation of tumor microenvironment reconstruction developed in this study not only creates a perfusable tumor vascular model but can also be utilized as a novel drug screening platform with patient-derived samples.
Collapse
Affiliation(s)
- Joonha Park
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jiman Hong
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
4
|
Far-Red Fluorescent Murine Glioma Model for Accurate Assessment of Brain Tumor Progression. Cancers (Basel) 2022; 14:cancers14153822. [PMID: 35954485 PMCID: PMC9367351 DOI: 10.3390/cancers14153822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most common brain tumor, for which no significant improvement in life expectancy and quality of life is yet possible. The creation of stable fluorescent glioma cell lines is a promising tool for in-depth studies of the molecular mechanisms of glioma initialization and pathogenesis, as well as for the development of new anti-cancer strategies. Herein, a new fluorescent glioma GL261-kat cell line stably expressing a far-red fluorescent protein (TurboFP635; Katushka) was generated and characterized, and then validated in a mouse orthotopic glioma model. By using epi-fluorescence imaging, we detect the fluorescent glioma GL261-kat cells in mice starting from day 14 after the inoculation of glioma cells, and the fluorescence signal intensity increases as the glioma progresses. Tumor growth is confirmed by magnetic resonance imaging and histology. A gradual development of neurological deficit and behavioral alterations in mice is observed during glioma progression. In conclusion, our results demonstrate the significance and feasibility of using the novel glioma GL261-kat cell line as a model of glioma biology, which can be used to study the initialization of glioma and monitor its growth by lifetime non-invasive tracking of glioma cells, with the prospect of monitoring the response to anti-cancer therapy.
Collapse
|
5
|
Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers' Performance In Vitro and In Vivo. Pharmaceutics 2021; 14:pharmaceutics14010043. [PMID: 35056939 PMCID: PMC8778343 DOI: 10.3390/pharmaceutics14010043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development of non-invasive photothermal therapy (PTT) methods utilizing nanoparticles as sensitizers is one of the most promising directions in modern oncology. Nanoparticles loaded with photothermal dyes are capable of delivering a sufficient amount of a therapeutic substance and releasing it with the desired kinetics in vivo. However, the effectiveness of oncotherapy methods, including PTT, is often limited due to poor penetration of sensitizers into the tumor, especially into solid tumors of epithelial origin characterized by tight cellular junctions. In this work, we synthesized 200 nm nanoparticles from the biocompatible copolymer of lactic and glycolic acid, PLGA, loaded with magnesium phthalocyanine, PLGA/Pht-Mg. The PLGA/Pht-Mg particles under the irradiation with NIR light (808 nm), heat the surrounding solution by 40 °C. The effectiveness of using such particles for cancer cells elimination was demonstrated in 2D culture in vitro and in our original 3D model with multicellular spheroids possessing tight cell contacts. It was shown that the mean inhibitory concentration of such nanoparticles upon light irradiation for 15 min worsens by more than an order of magnitude: IC50 increases from 3 µg/mL for 2D culture vs. 117 µg/mL for 3D culture. However, when using the JO-4 intercellular junction opener protein, which causes a short epithelial–mesenchymal transition and transiently opens intercellular junctions in epithelial cells, the efficiency of nanoparticles in 3D culture was comparable or even outperforming that for 2D (IC50 = 1.9 µg/mL with JO-4). Synergy in the co-administration of PTT nanosensitizers and JO-4 protein was found to retain in vivo using orthotopic tumors of BALB/c mice: we demonstrated that the efficiency in the delivery of such nanoparticles to the tumor is 2.5 times increased when PLGA/Pht-Mg nanoparticles are administered together with JO-4. Thus the targeting the tumor cell junctions can significantly increase the performance of PTT nanosensitizers.
Collapse
|
6
|
Carboplatin response in preclinical models for ovarian cancer: comparison of 2D monolayers, spheroids, ex vivo tumors and in vivo models. Sci Rep 2021; 11:18183. [PMID: 34521878 PMCID: PMC8440566 DOI: 10.1038/s41598-021-97434-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. Among the key challenges in developing effective therapeutics is the poor translation of preclinical models used in the drug discovery pipeline. This leaves drug attrition rates and costs at an unacceptably high level. Previous work has highlighted the discrepancies in therapeutic response between current in vitro and in vivo models. To address this, we conducted a comparison study to differentiate the carboplatin chemotherapy response across four different model systems including 2D monolayers, 3D spheroids, 3D ex vivo tumors and mouse xenograft models. We used six previously characterized EOC cell lines of varying chemosensitivity and performed viability assays for each model. In vivo results from the mouse model correlated with 2D response in 3/6 cell lines while they correlated with 3D spheroids and the ex vivo model in 4/6 and 5/5 cell lines, respectively. Our results emphasize the variability in therapeutic response across models and demonstrate that the carboplatin response in EOC cell lines cultured in a 3D ex vivo model correlates best with the in vivo response. These results highlight a more feasible, reliable, and cost-effective preclinical model with the highest translational potential for drug screening and prediction studies in EOC.
Collapse
|
7
|
Lee HR, Kim DW, Jones VO, Choi Y, Ferry VE, Geller MA, Azarin SM. Sonosensitizer-Functionalized Graphene Nanoribbons for Adhesion Blocking and Sonodynamic Ablation of Ovarian Cancer Spheroids. Adv Healthc Mater 2021; 10:e2001368. [PMID: 34050609 PMCID: PMC8550295 DOI: 10.1002/adhm.202001368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/18/2021] [Indexed: 11/05/2022]
Abstract
Advanced stage ovarian cancer is challenging to treat due to widespread seeding of tumor spheroids throughout the mesothelial lining of the peritoneal cavity. In this work, a therapeutic strategy using graphene nanoribbons (GNR) functionalized with 4-arm polyethylene glycol (PEG) and chlorin e6 (Ce6), a sonosensitizer, to target metastatic ovarian cancer spheroids is reported. GNR-PEG-Ce6 adsorbs onto the spheroids and disrupts their adhesion to extracellular matrix proteins or LP-9 mesothelial cells. Furthermore, for spheroids that do adhere, GNR-PEG-Ce6 delays spheroid disaggregation and spreading as well as mesothelial clearance, key metastatic processes following adhesion. Owing to the sonodynamic effects of Ce6 and its localized delivery via the biomaterial, GNR-PEG-Ce6 can kill ovarian cancer spheroids adhered to LP-9 cell monolayers when combined with mild ultrasound irradiation. The interaction with GNR-PEG-Ce6 also loosens cell-cell adhesions within the spheroids, rendering them more susceptible to treatment with the chemotherapeutic agents cisplatin and paclitaxel, which typically have difficulty in penetrating ovarian cancer spheroids. Thus, this material can facilitate effective chemotherapeutic and sonodynamic combination therapies. Finally, the adhesion inhibiting and sonodynamic effects of GNR-PEG-Ce6 are also validated with tumor spheroids derived from the ascites fluid of ovarian cancer patients, providing evidence of the translational potential of this biomaterial approach.
Collapse
Affiliation(s)
- Hak Rae Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Victoria O Jones
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yunkyu Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vivian E Ferry
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samira M Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
8
|
Shilova O, Shramova E, Proshkina G, Deyev S. Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. Int J Mol Sci 2021; 22:ijms22094975. [PMID: 34067057 PMCID: PMC8124712 DOI: 10.3390/ijms22094975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Correspondence: (O.S.); (S.D.)
| | - Elena Shramova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Galina Proshkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Sergey Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
9
|
Krishnan MA, Chelvam V. Developing μSpherePlatform Using a Commercial Hairbrush: An Agarose 3D Culture Platform for Deep-Tissue Imaging of Prostate Cancer. ACS APPLIED BIO MATERIALS 2021; 4:4254-4270. [DOI: 10.1021/acsabm.1c00086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mena A. Krishnan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| | - Venkatesh Chelvam
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453 552, India
| |
Collapse
|
10
|
Patra B, Lateef MA, Brodeur MN, Fleury H, Carmona E, Péant B, Provencher D, Mes-Masson AM, Gervais T. Carboplatin sensitivity in epithelial ovarian cancer cell lines: The impact of model systems. PLoS One 2021; 15:e0244549. [PMID: 33382759 PMCID: PMC7774933 DOI: 10.1371/journal.pone.0244549] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America, underscoring the need for the development of new therapeutic strategies for the management of this disease. Although many drugs are pre-clinically tested every year, only a few are selected to be evaluated in clinical trials, and only a small number of these are successfully incorporated into standard care. Inaccuracies with the initial in vitro drug testing may be responsible for some of these failures. Drug testing is often performed using 2D monolayer cultures or 3D spheroid models. Here, we investigate the impact that these different in vitro models have on the carboplatin response of four EOC cell lines, and in particular how different 3D models (polydimethylsiloxane-based microfluidic chips and ultra low attachment plates) influence drug sensitivity within the same cell line. Our results show that carboplatin responses were observed in both the 3D spheroid models tested using apoptosis/cell death markers by flow cytometry. Contrary to previously reported observations, these were not associated with a significant decrease in spheroid size. For the majority of the EOC cell lines (3 out of 4) a similar carboplatin response was observed when comparing both spheroid methods. Interestingly, two cell lines classified as resistant to carboplatin in 2D cultures became sensitive in the 3D models, and one sensitive cell line in 2D culture showed resistance in 3D spheroids. Our results highlight the challenges of choosing the appropriate pre-clinical models for drug testing.
Collapse
Affiliation(s)
- Bishnubrata Patra
- Department of Engineering Physics and Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Muhammad Abdul Lateef
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Melica Nourmoussavi Brodeur
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Hubert Fleury
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Benjamin Péant
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montréal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
- * E-mail: (TG); (AMMM)
| | - Thomas Gervais
- Department of Engineering Physics and Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montréal, QC, Canada
- * E-mail: (TG); (AMMM)
| |
Collapse
|
11
|
Kutova OM, Sencha LM, Pospelov AD, Dobrynina OE, Brilkina AA, Cherkasova EI, Balalaeva IV. Comparative Analysis of Cell-Cell Contact Abundance in Ovarian Carcinoma Cells Cultured in Two- and Three-Dimensional In Vitro Models. BIOLOGY 2020; 9:biology9120446. [PMID: 33291824 PMCID: PMC7761996 DOI: 10.3390/biology9120446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Tumor resistance to therapy is a crucial problem of today’s oncology. The emerging data indicate that tumor microenvironment is the key participant in the resistance development. One of the most basic aspect of tumor microenvironment is intercellular adhesion. Our data obtained using monolayer culture, matrix-free and matrix-based three-dimensional in vitro models indicate that the abundance of cell-cell contact proteins is varying depending on the microenvironment. These differences coincided with the degree of the resistance to therapeutics. The importance of adhesion proteins in tumor resistance may provide the fundamental basis for improving cancer treatment approaches and must be taken into account when screening candidate drugs. Abstract Tumor resistance to therapy is associated with the 3D organization and peculiarities of the tumor microenvironment, of which intercellular adhesion is a key participant. In this work, the abundance of contact proteins was compared in SKOV-3 and SKOV-3.ip human ovarian adenocarcinoma cell lines, cultivated in monolayers, tumor spheroids and collagen hydrogels. Three-dimensional models were characterized by extremely low expression of basic molecules of adherens junctions E-cadherin and demonstrated a simultaneous decrease in desmosomal protein desmoglein-2, gap junction protein connexin-43 and tight junction proteins occludin and ZO-1. The reduction in the level of contact proteins was most pronounced in collagen hydrogel, accompanied by significantly increased resistance to treatment with doxorubicin and targeted anticancer toxin DARPin-LoPE. Thus, we suggest that 3D models of ovarian cancer, especially matrix-based models, tend to recapitulate tumor microenvironment and treatment responsiveness to a greater extent than monolayer culture, so they can be used as a highly relevant platform for drug efficiency evaluation.
Collapse
|
12
|
Kilic O, Matos de Souza MR, Almotlak AA, Wang Y, Siegfried JM, Distefano MD, Wagner CR. Anti-EGFR Fibronectin Bispecific Chemically Self-Assembling Nanorings (CSANs) Induce Potent T Cell-Mediated Antitumor Responses and Downregulation of EGFR Signaling and PD-1/PD-L1 Expression. J Med Chem 2020; 63:10235-10245. [PMID: 32852209 DOI: 10.1021/acs.jmedchem.0c00489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) on various cancers makes it an important target for cancer immunotherapy. We recently demonstrated that single-chain variable fragment-based bispecific chemically self-assembled nanorings (CSANs) can successfully modify T cell surfaces and function as prosthetic antigen receptors (PARs) allowing selective targeting of tumor antigens while incorporating a dissociation mechanism of the rings. Here, we report the generation of anti-EGFR fibronectin (FN3)-based PARs with high yield, rapid protein production, predicted low immunogenicity, and increased protein stability. We demonstrated the cytotoxicity of FN3-PARs successfully while evaluating FN3 affinities, CSAN valencies, and antigen expression levels. Using an orthotopic breast cancer model, we showed that FN3-PARs can suppress tumor growth with no adverse effects and FN3-PARs reduced immunosuppressive programmed cell death ligand-1 (PD-L1) expression by downregulating EGFR signaling. These results demonstrate the potential of FN3-PARs to direct selective T cell-targeted tumor killing and to enhance antitumor T cell efficacy by modulating the tumor microenvironment.
Collapse
Affiliation(s)
| | - Marcos R Matos de Souza
- Department of Virology, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Antimicrobial Peptides as New Combination Agents in Cancer Therapeutics: A Promising Protocol against HT-29 Tumoral Spheroids. Int J Mol Sci 2020; 21:ijms21186964. [PMID: 32971958 PMCID: PMC7555805 DOI: 10.3390/ijms21186964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides are molecules synthetized by a large variety of organisms as an innate defense against pathogens. These natural compounds have been identified as promising alternatives to widely used molecules to treat infections and cancer cells. Antimicrobial peptides could be viewed as future chemotherapeutic alternatives, having the advantage of low propensity to drug resistance. In this study, we evaluated the efficiency of the antimicrobial peptide gramicidin A (GA) and the anticancer drug, doxorubicin (Doxo) against the spheroids from colorectal cancer cells (HT-29). The two drugs were applied separately against HT-29 spheroids as well as together to determine if they can act synergistically. The spheroid evolution, cell viability, and ATP levels were monitored at 24 and 48 h after the applied treatments. The results show significant drops in cell viability and cellular ATP levels for all the experimental treatments. The simultaneous use of the two compounds (GA and Doxo) seems to cause a synergistic effect against the spheroids.
Collapse
|
14
|
UCNP-based Photoluminescent Nanomedicines for Targeted Imaging and Theranostics of Cancer. Molecules 2020; 25:molecules25184302. [PMID: 32961731 PMCID: PMC7571190 DOI: 10.3390/molecules25184302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Theranostic approach is currently among the fastest growing trends in cancer treatment. It implies the creation of multifunctional agents for simultaneous precise diagnosis and targeted impact on tumor cells. A new type of theranostic complexes was created based on NaYF4: Yb,Tm upconversion nanoparticles coated with polyethylene glycol and functionalized with the HER2-specific recombinant targeted toxin DARPin-LoPE. The obtained agents bind to HER2-overexpressing human breast adenocarcinoma cells and demonstrate selective cytotoxicity against this type of cancer cells. Using fluorescent human breast adenocarcinoma xenograft models, the possibility of intravital visualization of the UCNP-based complexes biodistribution and accumulation in tumor was demonstrated.
Collapse
|
15
|
Pisano S, Pierini I, Gu J, Gazze A, Francis LW, Gonzalez D, Conlan RS, Corradetti B. Immune (Cell) Derived Exosome Mimetics (IDEM) as a Treatment for Ovarian Cancer. Front Cell Dev Biol 2020; 8:553576. [PMID: 33042993 PMCID: PMC7528637 DOI: 10.3389/fcell.2020.553576] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are physiologically secreted nanoparticles recently established as natural delivery systems involved in cell-to-cell communication and content exchange. Due to their inherent targeting potential, exosomes are currently being harnessed for the development of anti-cancer therapeutics. Clinical trials evaluating their effectiveness are demonstrating safety and promising outcomes. However, challenging large-scale production, isolation, modification and purification of exosomes are current limitations for the use of naturally occurring exosomes in the clinic. Exosome mimetics hold the promise to improve the delivery of bioactive molecules with therapeutic efficacy, while achieving scalability and increasing bioavailability. In this study, we propose the development of Immune Derived Exosome Mimetics (IDEM) as a scalable approach to target and defeat ovarian cancer cells. IDEM were fabricated from monocytic cells by combining sequential filtration steps through filter membranes with different porosity and size exclusion chromatography columns. The physiochemical and molecular characteristics of IDEM were compared to those of natural exosomes (EXO). Nanoparticle Tracking Analysis confirmed a 2.48-fold increase in the IDEM production yields compared to EXO, with similar exosomal markers profiles (CD81, CD63) as demonstrated by flow cytometry and ELISA. To exploit the prospective of IDEM to deliver chemotherapeutics, doxorubicin (DOXO) was used as a model drug. IDEM showed higher encapsulation efficiency and drug release over time compared to EXO. The uptake of both formulations by SKOV-3 ovarian cancer cells was assessed by confocal microscopy and flow cytometry, showing an incremental drug uptake over time. The analysis of the cytotoxic and apoptotic effect of DOXO-loaded nanoparticles both in 2D and 3D culture systems proved IDEM as a more efficient system as compared to free DOXO, unraveling the advantage of IDEM in reducing side-effects while increasing cytotoxicity of targeted cells, by delivering smaller amount of the chemotherapeutic agent. The high yields of IDEM obtained compared to natural exosomes together with the time-effectiveness and reproducibility of their production method make this approach potentially exploitable for clinical applications. Most importantly, the appreciable cytotoxic effect observed on ovarian cancer in vitro systems sets the ground for the development of compelling nanotherapeutic candidates for the treatment of this malady and will be further evaluated.
Collapse
Affiliation(s)
- Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Centre for NanoHealth, Swansea University Medical School, Swansea, United Kingdom
| | - Irene Pierini
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Jianhua Gu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Andrea Gazze
- Centre for NanoHealth, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis Webb Francis
- Centre for NanoHealth, Swansea University Medical School, Swansea, United Kingdom
| | - Deyarina Gonzalez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Robert Steven Conlan
- Centre for NanoHealth, Swansea University Medical School, Swansea, United Kingdom
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Centre for NanoHealth, Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
16
|
Semertzidou A, Brosens JJ, McNeish I, Kyrgiou M. Organoid models in gynaecological oncology research. Cancer Treat Rev 2020; 90:102103. [PMID: 32932156 DOI: 10.1016/j.ctrv.2020.102103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Cell culture and animal models represent experimental cornerstones for the investigation of tissue, organ and body physiology in the context of gynaecological research. However, their ability to accurately reflect human mechanisms in vivo is limited. The development of organoid technologies has begun to address this limitation by providing platforms ex vivo that resemble the phenotype and genotype of the multi-cellular tissue from which they were derived more accurately. In this review, we discuss advances in organoid derivation from endometrial, ovarian, fallopian tube and cervical tissue, both benign and malignant, the manipulation of organoid microenvironment to preserve stem cell populations and achieve long-term expansion and we explore the morphological and molecular kinship of organoids to parent tissue. Apart from providing new insight into mechanisms of carcinogenesis, gynaecological cancer-derived organoids can be utilised as tools for drug screening of chemotherapeutic and hormonal compounds where they exhibit interpatient variability consistent with states in vivo and xenografted tumours allowing for patient-tailored treatment strategies. Bridging organoid with bioengineering accomplishments is clearly the way forward to the generation of organoid-on-a-chip technologies enhancing the robustness of the model and its translational potential. Undeniably, organoids are expected to stand their ground in the years to come and revolutionize development and disease modelling studies.
Collapse
Affiliation(s)
- Anita Semertzidou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Iain McNeish
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Maria Kyrgiou
- Department of Surgery and Cancer & Department of Digestion, Metabolism and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Queen Charlotte's and Chelsea - Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK.
| |
Collapse
|
17
|
Cell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured models. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|