1
|
Mohammadi-Meyabadi R, Mallandrich M, Beirampour N, Garrós N, Espinoza LC, Sosa L, Suñer-Carbó J, Rodríguez-Lagunas MJ, Garduño-Ramírez ML, Calpena-Campmany AC. Lipid-Based Formulation of Baricitinib for the Topical Treatment of Psoriasis. Pharmaceutics 2024; 16:1287. [PMID: 39458616 PMCID: PMC11510483 DOI: 10.3390/pharmaceutics16101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Baricitinib, commonly used for autoimmune diseases, is typically administered orally, which can lead to systemic adverse effects. A topical formulation could potentially offer localized therapeutic effects while minimizing these side effects. OBJECTIVES This study focuses on developing a lipid-based topical formulation of baricitinib (BCT-OS) for treating psoriasis. METHODS The optimized formulation was then assessed for physical, chemical, and biopharmaceutical characterization. Furthermore, the anti-inflammatory efficacy of the formulation was tested in a model of psoriasis induced by imiquimod in mice, and its tolerance was determined by the evaluation of biomechanical skin properties and an inflammation test model induced by xylol in mice. RESULTS BCT-OS presented appropriate characteristics for skin administration in terms of pH, rheology, extensibility, and stability. The formulation also demonstrated a notable reduction in skin inflammation in the mouse model, and high tolerability without affecting the skin integrity. CONCLUSIONS BCT-OS shows promise as an alternative treatment for psoriasis, offering localized therapeutic benefits with a potentially improved safety profile compared to systemic administration.
Collapse
Affiliation(s)
- Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Lupe Carolina Espinoza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
- Instituto de Investigaciones en Microbiología (IIM), Universidad Nacional Autónoma de Hondura (UNAH), Tegucigalpa 11101, Honduras
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Ana C. Calpena-Campmany
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Cardona YV, Muñoz LG, Cardozo DG, Chamorro AF. Recent Applications of Amphiphilic Copolymers in Drug Release Systems for Skin Treatment. Pharmaceutics 2024; 16:1203. [PMID: 39339239 PMCID: PMC11435020 DOI: 10.3390/pharmaceutics16091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Amphiphilic copolymers (ACs) are versatile systems with self-assembling and aggregating properties, enabling the formation of nanomaterials (NMs) such as micelles, vesicles, nanocapsules, and nanogels. These materials have been extensively explored for the delivery of various drugs and active compounds, enhancing the solubility and permeation of poorly water-soluble drugs into skin tissue. This improvement facilitates the treatment of skin diseases, including chronic conditions like cancer, as well as infections caused by bacteria, fungi, and viruses. This review summarizes recent applications of ACs in skin treatment, with a particular focus on their use in anti-cancer drug therapy. It covers the synthesis, classification, and characterization of ACs using various experimental techniques. Additionally, it discusses recent research on different drug delivery pathways using ACs, including encapsulation efficiency, release behavior, characteristics, applications, and responses to various chemical and physical stimuli (both in vivo and in vitro). Furthermore, this review provides a comprehensive analysis of the effects of ACs NMs on several skin diseases, highlighting their potential as alternative treatments.
Collapse
Affiliation(s)
- Yudy Vanessa Cardona
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Lizeth Geraldine Muñoz
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Daniela Gutierrez Cardozo
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Andrés Felipe Chamorro
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
3
|
Folle C, Marqués AM, Díaz-Garrido N, Carvajal-Vidal P, Sánchez López E, Suñer-Carbó J, Halbaut L, Mallandrich M, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Gel-Dispersed Nanostructured Lipid Carriers Loading Thymol Designed for Dermal Pathologies. Int J Nanomedicine 2024; 19:1225-1248. [PMID: 38348173 PMCID: PMC10859765 DOI: 10.2147/ijn.s433686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/22/2023] [Indexed: 02/15/2024] Open
Abstract
Purpose Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Research Institute Sant Joan De Déu (IR‑SJD), Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Silva-Abreu M, Sosa L, Espinoza LC, Fábrega MJ, Rodríguez-Lagunas MJ, Mallandrich M, Calpena AC, Garduño-Ramírez ML, Rincón M. Efficacy of Apremilast Gels in Mouse Model of Imiquimod-Induced Psoriasis Skin Inflammation. Pharmaceutics 2023; 15:2403. [PMID: 37896163 PMCID: PMC10610068 DOI: 10.3390/pharmaceutics15102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Apremilast (APM) is a novel drug for the treatment of psoriasis and psoriatic arthritis. APM is a phosphodiesterase 4 (PDE4) inhibitor, raising intracellular cAMP levels and thereby decreasing the inflammatory response by modulating the expression of TNF-α, IL-17, IL-23, and other inflammatory cytokines. The goal of this study is to develop APM gels as a new pharmaceutical formulation for the treatment of topical psoriasis. APM was solubilized in Transcutol-P and incorporated into Pluronic F127, Sepigel, and carbomer bases at different proportions. All formulations were characterized physiochemically. A biopharmaceutical study (release profile) was performed, and ex vivo permeation was evaluated using a human skin model. A toxicity assay was carried out on the HaCaT cell line. A mouse model of imiquimod-induced psoriasis skin inflammation was carried out to determine its efficacy by histological analysis, RNA extraction, and RT-qPCR assays. APM gel formulations showed good physicochemical characteristics and a sustained release profile. There was no permeation of any gel measured through human skin, indicating a high retained amount of APM on the skin. Cell viability was greater than 80% at most dilution concentrations. APM gels treated the psoriasis mouse model, and it shows a reduction in the proinflammatory cytokines (IL-8, IL-17A, IL-17F, and IL-23). APM gels could be a new approach for the treatment of topical psoriasis.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - Lilian Sosa
- Research Institute of Applied Sciences and Technology, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
- Microbiology Research Institute, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Lupe Carolina Espinoza
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc de Recerca Biomèdica de Barcelona, University Pompeu Fabra (UPF), 08005 Barcelona, Spain;
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - Ana Cristina Calpena
- Departament de Farmàcia, Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (M.M.); (A.C.C.)
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
| | - María Luisa Garduño-Ramírez
- Center for Chemical Research, Institute for Research Basic and Applied Sciences, Autonomous University of the State of Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico;
| | - María Rincón
- Institut de Nanociència i Nanotecnologia IN2UB, University of Barcelona, 08028 Barcelona, Spain; (L.C.E.); (M.R.)
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), C. Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Sosa L, Espinoza LC, Valarezo E, Bozal N, Calpena A, Fábrega MJ, Baldomà L, Rincón M, Mallandrich M. Therapeutic Applications of Essential Oils from Native and Cultivated Ecuadorian Plants: Cutaneous Candidiasis and Dermal Anti-Inflammatory Activity. Molecules 2023; 28:5903. [PMID: 37570874 PMCID: PMC10420932 DOI: 10.3390/molecules28155903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, α-phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF-α, IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation.
Collapse
Affiliation(s)
- Lilian Sosa
- Microbiological Research Institute (IIM), National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
- Research Institute of Applied Sciences and Technology, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (E.V.)
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Eduardo Valarezo
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (E.V.)
| | - Núria Bozal
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Ana Calpena
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain;
- Departament Farmàcia, Tecnologia Farmacèutica, i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - María-José Fábrega
- Department of Experimental and Health Sciences, Parc of Biomedical Research of Barcelona, Pompeu Fabra University, 08003 Barcelona, Spain;
| | - Laura Baldomà
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - María Rincón
- Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona (UB), 08028 Barcelona, Spain;
| | - Mireia Mallandrich
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), 08028 Barcelona, Spain;
- Departament Farmàcia, Tecnologia Farmacèutica, i Físicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
6
|
Bellotti D, D’Accolti M, Pula W, Huang N, Simeliere F, Caselli E, Esposito E, Remelli M. Calcitermin-Loaded Smart Gels Activity against Candida albicans: A Preliminary In Vitro Study. Gels 2023; 9:gels9020165. [PMID: 36826335 PMCID: PMC9957098 DOI: 10.3390/gels9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Calcitermin is an antimicrobial peptide of 15 amino acids found in human nasal fluid characterized by antifungal and antibacterial properties. Candida albicans is the most common human fungal pathogen affecting many tissues, such as vaginal mucosa. In this study a formulation suitable for calcitermin administration on vaginal mucosa was developed for the treatment of fungal infections. To favor topical application, mucosal adhesion, and permanence, gels based on poloxamer 407 and xanthan gum were designed and compared with regard to their rheological behavior, erosion, and leakage. The selected gel was loaded with calcitermin, whose release kinetic was evaluated in vitro by Franz cells. An antifungal activity assay was conducted to assess the calcitermin anticandidal potential and the effect of its inclusion in the selected gel. The rheological study revealed the elastic and viscous moduli behavior as a function of poloxamer 407 and xanthan gum concentration. Xanthan gum presence decreased the transition temperature of the gel, while prolonging its erosion and leakage. Particularly, poloxamer 407, 18% and xanthan gum 0.4% were chosen. The calcitermin loading in the selected gel resulted in a transparent and homogeneous formulation and in a 4-fold decrease of the release rate with respect to the calcitermin solution, as evidenced by Franz cell study. The anticandidal activity tests demonstrated that calcitermin-loaded gel was more active against Candida albicans with respect to the peptide solution.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Maria D’Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Nicolas Huang
- Institut Galien Paris-Saclay (CNRS UMR 8612), Faculté de Pharmacie, Bâtiment Henri Moissan, Université Paris-Saclay, 91400 Orsay, France
| | - Fanny Simeliere
- Institut Galien Paris-Saclay (CNRS UMR 8612), Faculté de Pharmacie, Bâtiment Henri Moissan, Université Paris-Saclay, 91400 Orsay, France
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.C.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.C.); (E.E.)
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
7
|
Sosa L, Espinoza LC, Fuentes JM, Siwady JA, Rodríguez Rivas F, Rincón Díaz M. Polyene macrolide antibiotic nanoemulsion: a proposal for the treatment of cutaneous leishmaniasis. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease that requires timely and inexpensive treatment. For this purpose, a nanoemulsion with a polyene macrolide antibiotic, or amphotericin B (NE-AmB), was developed. This study quantified the amount of drug permeated and retained in intact and lacerated human skin, simulating cutaneous leishmaniasis (CL) processes. Toxicity in macrophage and keratinocyte cell lines, activity against promastigotes and amastigotes of Leishmania tropica, in vivo irritant activity, and histological evidence was evaluated. Results. The amount of drug retained in intact and damaged skin was 750.18 ± 5.43 and 567.97 ± 8.64 µg/g/cm2, respectively. There was no permeation. No apparent toxic effect was observed in HaCaT cell lines. The IC50 of NE-AmB found for promastigotes and amastigotes was 0.26 ± 0.09 and 0.37 ± 0.05 µg/mL, respectively. NE without AmB did show antiparasitic activity. The formulation showed lower IC50 values on both parasite stages than the AmB solution. There was no skin irritation, and histology showed skin improvement with treatment. We suggest that this NE-AmB may be a candidate for in vivo studies in CL patients.
Keywords. Leishmaniasis, Amphotericin B, ex vivo permeation studies, in vitro cytotoxicity, in vitro leishmanicidal activity, Draize test, histology.
Collapse
Affiliation(s)
- Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemistry and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Lupe Carolina Espinoza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | | | - Jorge Alberto Siwady
- Department of Pharmaceutical Technology, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - Fredy Rodríguez Rivas
- Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa, Honduras
| | - María Rincón Díaz
- Department of Materials Science and Physical Chemistry, Faculty of Chemistry, University of Barcelona (UB), Barcelona
| |
Collapse
|
8
|
Espinoza LC, Guaya D, Calpena AC, Perotti RM, Halbaut L, Sosa L, Brito-Llera A, Mallandrich M. Comparative Study of Donepezil-Loaded Formulations for the Treatment of Alzheimer's Disease by Nasal Administration. Gels 2022; 8:715. [PMID: 36354623 PMCID: PMC9689763 DOI: 10.3390/gels8110715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 08/30/2023] Open
Abstract
Alzheimer's disease is characterized by a progressive deterioration of neurons resulting in a steady loss of cognitive functions and memory. Many treatments encounter the challenge of overcoming the blood-brain barrier, thus the intranasal route is a non-invasive effective alternative that enhances the drug delivery in the target organ-the brain-and reduces the side effects associated with systemic administration. This study aimed at developing intranasal gels of donepezil as an approach to Alzheimer's disease. Three different gels were elaborated and characterized in terms of pH, morphology, gelation temperature, rheology, and swelling. An in vitro release study and an ex vivo permeation in porcine nasal mucosa were conducted on Franz diffusion cells. The tolerability of the formulations was determined by the cytotoxicity in human nasal cells RPMI 2650. Results showed that pluronic gels exhibit the higher release rate and enhanced permeation compared to chitosan gel. Moreover, the combination of Pluronic F-127 and Transcutol® P exerted a synergic effect on the permeation of donepezil through the nasal mucosa. The resulting gels showed suitable tolerance in the RPMI 2650 cell line and physicochemical characteristics for intranasal delivery, and thus gel formulations administered by nasal mucosa could be an alternative strategy to improve the bioavailability of donepezil.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Diana Guaya
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Ana Cristina Calpena
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Rodolfo Miguel Perotti
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Adriel Brito-Llera
- Dirección de Ciencia, Tecnología e Innovación, Universidad de la Habana, Calle M entre 19 y 21 #255, Vedado, La Habana 10400, Cuba
| | - Mireia Mallandrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Gosecka M, Jaworska-Krych D, Gosecki M, Wielgus E, Marcinkowska M, Janaszewska A, Klajnert-Maculewicz B. Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology. Biomacromolecules 2022; 23:4203-4219. [PMID: 36073031 PMCID: PMC9554913 DOI: 10.1021/acs.biomac.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Injectable, self-healing hydrogels with enhanced solubilization
of hydrophobic drugs are urgently needed for antimicrobial intravaginal
therapies. Here, we report the first hydrogel systems constructed
of dynamic boronic esters cross-linking unimolecular micelles, which
are a reservoir of antifungal hydrophobic drug molecules. The selective
hydrophobization of hyperbranched polyglycidol with phenyl units in
the core via ester or urethane bonds enabled the solubilization of
clotrimazole, a water-insoluble drug of broad antifungal properties.
The encapsulation efficiency of clotrimazole increases with the degree
of the HbPGL core modification; however, the encapsulation is more
favorable in the case of urethane derivatives. In addition, the rate
of clotrimazole release was lower from HbPGL hydrophobized via urethane
bonds than with ester linkages. In this work, we also revealed that
the hydrophobization degree of HbPGL significantly influences the
rheological properties of its hydrogels with poly(acrylamide-ran-2-acrylamidephenylboronic acid). The elastic strength
of networks (GN) and the thermal stability
of hydrogels increased along with the degree of HbPGL core hydrophobization.
The degradation of the hydrogel constructed of the neat HbPGL was
observed at approx. 40 °C, whereas the hydrogels constructed
on HbPGL, where the monohydroxyl units were modified above 30 mol
%, were stable above 50 °C. Moreover, the flow and self-healing
ability of hydrogels were gradually decreased due to the reduced dynamics
of macromolecules in the network as an effect of increased hydrophobicity.
The changes in the rheological properties of hydrogels resulted from
the engagement of phenyl units into the intermolecular hydrophobic
interactions, which besides boronic esters constituted additional
cross-links. This study demonstrates that the HbPGL core hydrophobized
with phenyl units at 30 mol % degrees via urethane linkages is optimal
in respect of the drug encapsulation efficiency and rheological properties
including both self-healable and injectable behavior. This work is
important because of a proper selection of a building component for
the construction of a therapeutic hydrogel platform dedicated to the
intravaginal delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Monika Gosecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Daria Jaworska-Krych
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mateusz Gosecki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Monika Marcinkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
10
|
|
11
|
Enhanced Transdermal Delivery of Pranoprofen Using a Thermo-Reversible Hydrogel Loaded with Lipid Nanocarriers for the Treatment of Local Inflammation. Pharmaceuticals (Basel) 2021; 15:ph15010022. [PMID: 35056079 PMCID: PMC8778151 DOI: 10.3390/ph15010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
A biocompatible topical thermo-reversible hydrogel containing Pranoprofen (PF)-loaded nanostructured lipid carriers (NLCs) was studied as an innovative strategy for the topical treatment of skin inflammatory diseases. The PF-NLCs-F127 hydrogel was characterized physiochemically and short-time stability tests were carried out over 60 days. In vitro release and ex vivo human skin permeation studies were carried out in Franz diffusion cells. In addition, a cytotoxicity assay was studied using the HaCat cell line and in vivo tolerance study was performed in humans by evaluating the biomechanical properties. The anti-inflammatory effect of the PF-NLCs-F127 was evaluated in adult male Sprague Daw-ley® rats using a model of inflammation induced by the topical application of xylol for 1 h. The developed PF-NLCs-F127 exhibited a heterogeneous structure with spherical PF-NLCs in the hydrogel. Furthermore, a thermo-reversible behaviour was determined with a gelling temperature of 32.5 °C, being close to human cutaneous temperature and thus favouring the retention of PF. Furthermore, in the ex vivo study, the amount of PF retained and detected in human skin was high and no systemic effects were observed. The hydrogel was found to be non-cytotoxic, showing cell viability of around 95%. The PF-NLCs-F127 is shown to be well tolerated and no signs of irritancy or alterations of the skin's biophysical properties were detected. The topical application of PF-NLCs-F127 hydrogel was shown to be efficient in an inflammatory animal model, preventing the loss of stratum corneum and reducing the presence of leukocyte infiltration. The results from this study confirm that the developed hydrogel is a suitable drug delivery carrier for the transdermal delivery of PF, improving its dermal retention, opening the possibility of using it as a promising candidate and safer alternative to topical treatment for local skin inflammation and indicating that it could be useful in the clinical environment.
Collapse
|
12
|
Espinoza LC, Sosa L, Granda PC, Bozal N, Díaz-Garrido N, Chulca-Torres B, Calpena AC. Development of a Topical Amphotericin B and Bursera graveolens Essential Oil-Loaded Gel for the Treatment of Dermal Candidiasis. Pharmaceuticals (Basel) 2021; 14:ph14101033. [PMID: 34681257 PMCID: PMC8538170 DOI: 10.3390/ph14101033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
The higher molecular weight and low solubility of amphotericin B (AmB) hinders its topical administration. The aim of this study was to incorporate Bursera graveolens essential oil into an AmB topical gel (AmB + BGEO gel) in order to promote the diffusion of the drug through the skin in the treatment of cutaneous candidiasis. AmB + BGEO gel formulation was determined using a factorial experiment. Physical and chemical parameters, stability, in vitro release profile and ex vivo permeation in human skin were evaluated. In vitro antimicrobial activity was studied using strains of C. albicans, C. glabrata and C. parapsilosis. The tolerability was evaluated using in vitro and in vivo models. AmB + BGEO gel presented appropriate characteristics for topical administration, including pH of 5.85, pseudoplastic behavior, optimal extensibility, as well as high stability and acceptable tolerability. In vitro release studies showed that the formulation releases the drug following a Boltzmann sigmoidal model. Finally, AmB + BGEO gel exhibited higher amount of drug retained inside the skin and lower Minimum Inhibitory Concentration than a formulation sans essential oil. Therefore, these results suggest that the incorporation of B. graveolens essential oil in the formulation could be used as strategy to promote a local effect in the treatment of cutaneous candidiasis.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (B.C.-T.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
| | - Lilian Sosa
- Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras;
| | - Paulo C. Granda
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Bozal
- Department of Biology, Healthcare and the Environment, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine of the University of Barcelona-Sant Joan de Déu Research Institute (IBUB-IRSJD), 08028 Barcelona, Spain
| | - Brenda Chulca-Torres
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador; (L.C.E.); (B.C.-T.)
| | - Ana Cristina Calpena
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
13
|
Antimicrobial Polymer-Based Hydrogels for the Intravaginal Therapies-Engineering Considerations. Pharmaceutics 2021; 13:pharmaceutics13091393. [PMID: 34575468 PMCID: PMC8469626 DOI: 10.3390/pharmaceutics13091393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
The review is focused on the hydrogel systems dedicated to the intravaginal delivery of antibacterial, antifungal and anti-Trichomonas vaginalis activity drugs for the treatment of gynaecological infections. The strategies for the enhancement of the hydrophobic drug solubility in the hydrogel matrix based on the formation of bigel systems and the introduction of nano- and microparticles as a drug reservoir are presented. Hydrogel carriers of natural and synthetic pharmacological substances, drug-free systems displaying antimicrobial activity thanks to the hydrogel building elements and systems combining the antimicrobial activity of both drug and polymer building components are distinguished. The design of hydrogels facilitating their administration and proper distribution in the vaginal mucosa and the vagina based on thermoresponsive systems capable of gelling at vaginal conditions and already-cross-linked injectable systems after reaching the yield stress are discussed. In addition, the mechanisms of hydrogel bioadhesion that regulate the retention time in the vagina are indicated. Finally, the prospects for the further development of hydrogel-based drug carriers in gynaecological therapies are highlighted.
Collapse
|
14
|
Chen Y, Lee JH, Meng M, Cui N, Dai CY, Jia Q, Lee ES, Jiang HB. An Overview on Thermosensitive Oral Gel Based on Poloxamer 407. MATERIALS 2021; 14:ma14164522. [PMID: 34443046 PMCID: PMC8399853 DOI: 10.3390/ma14164522] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
In this review, we describe the application of thermosensitive hydrogels composed of poloxamer in medicine, especially for oral cavities. Thermosensitive hydrogels remain fluid at room temperature; at body temperature, they become more viscous gels. In this manner, the gelling system can remain localized for considerable durations and control and prolong drug release. The chemical structure of the poloxamer triblock copolymer leads to an amphiphilic aqueous solution and an active surface. Moreover, the poloxamer can gel by forming micelles in an aqueous solution, depending on its critical micelle concentration and critical micelle temperature. Owing to its controlled-release effect, a thermosensitive gel based on poloxamer 407 (P407) is used to deliver drugs with different characteristics. As demonstrated in studies on poloxamer formulations, an increase in gelling viscosity decreases the drug release rate and gel dissolution time to the extent that it prolongs the drug’s duration of action in disease treatment. This property is used for drug delivery and different therapeutic applications. Its unique route of administration, for many oral diseases, is advantageous over traditional routes of administration, such as direct application and systemic treatment. In conclusion, thermosensitive gels based on poloxamers are suitable and have great potential for oral disease treatment.
Collapse
Affiliation(s)
- Yabing Chen
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Jeong-Ho Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
| | - Mingyue Meng
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Naiyu Cui
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Chun-Yu Dai
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Qi Jia
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
| | - Eui-Seok Lee
- Department of Oral and Maxillofacial Surgery, Graduate School of Clinical Dentistry, Korea University, Seoul 08308, Korea;
- Correspondence: (E.-S.L.); (H.-B.J.)
| | - Heng-Bo Jiang
- Stomatological Materials Laboratory, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an 271016, China; (Y.C.); (M.M.); (N.C.); (C.-Y.D.); (Q.J.)
- Correspondence: (E.-S.L.); (H.-B.J.)
| |
Collapse
|
15
|
EtoGel for Intra-Articular Drug Delivery: A New Challenge for Joint Diseases Treatment. J Funct Biomater 2021; 12:jfb12020034. [PMID: 34065713 PMCID: PMC8162362 DOI: 10.3390/jfb12020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ethosomes® have been proposed as potential intra-articular drug delivery devices, in order to obtain a longer residence time of the delivered drug in the knee joint. To this aim, the conventional composition and preparation method were modified. Ethosomes® were prepared by using a low ethanol concentration and carrying out a vesicle extrusion during the preparation. The modified composition did not affect the deformability of ethosomes®, a typical feature of this colloidal vesicular topical carrier. The maintenance of sufficient deformability bodes well for an effective ethosome® application in the treatment of joint pathologies because they should be able to go beyond the pores of the dense collagen II network. The investigated ethosomes® were inserted in a three-dimensional network of thermo-sensitive poloxamer gel (EtoGel) to improve the residence time in the joint. Rheological experiments evidenced that EtoGel could allow an easy intra-articular injection at room temperature and hence transform itself in gel form at body temperature into the joint. Furthermore, EtoGel seemed to be able to support the knee joint during walking and running. In vitro studies demonstrated that the amount of used ethanol did not affect the viability of human chondrocytes and nanocarriers were also able to suitably interact with cells.
Collapse
|
16
|
Goel H, Gupta N, Santhiya D, Dey N, Bohidar HB, Bhattacharya A. Bioactivity reinforced surface patch bound collagen-pectin hydrogel. Int J Biol Macromol 2021; 174:240-253. [PMID: 33515570 DOI: 10.1016/j.ijbiomac.2021.01.166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023]
Abstract
In this report, we discuss the design of a novel collagen/pectin (CP) hybrid composite hydrogel (CPBG) containing in-situ mineralized bioactive glass (BG) particles to simulate an integrative 3D cell environment. Systematic analysis of the CP sol revealed collagen and pectin molecules interacted regardless of both possessing similar net negative charge through the mechanism of surface patch binding interaction. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirmed this associative interaction which resulted in the formation of a hybrid crosslinked network with the BG nanoparticles acting as pseudo crosslink junctions. Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and Transmission Electron Microscopy (TEM) results confirmed uniform mineralization of BG particles, and their synergetic interaction with the network. The in-vitro bioactivity tests on CPBG indicated the formation of bone-like hydroxyapatite (Ca10(PO4)6(OH)2) microcrystals on its surface after interaction with simulated body fluid. This hydrogel was loaded with a model antifungal drug amphotericin-B (AmB) and tested against Candida albicans. The AmB release kinetics from the hydrogel followed the Fickian mechanism and showed direct proportionality to gel swelling behavior. Rheological analysis revealed the viscoelastic compatibility of CPBG for the mechanical load bearing applications. Cell viability tests indicated appreciable compatibility of the hydrogel against U2OS and HaCaT cell lines. FDA/PI on the hydrogel portrayed preferential U2OS cell adhesion on hydrophobic hydroxyapatite layer compared to hydrophilic surfaces, thereby promising the regeneration of both soft and hard tissues.
Collapse
Affiliation(s)
- Himansh Goel
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Nidhi Gupta
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; School of Physical Science, Jawaharlal Nehru University, New Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India.
| | - Namit Dey
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India; Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Himadri B Bohidar
- School of Physical Science, Jawaharlal Nehru University, New Delhi, India.
| | - Aditi Bhattacharya
- Department of Biochemistry, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
17
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Co-culture with Tetragenococcus halophilus improved the ethanol tolerance of Zygosaccharomyces rouxii by maintaining cell surface properties. Food Microbiol 2021; 97:103750. [PMID: 33653523 DOI: 10.1016/j.fm.2021.103750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of ethanol has a negative effect on the viability and fermentation performance of microorganisms during the production of fermented foods because of its toxicity. In this study, we investigated the effect of co-culture with Tetragenococcus halophilus on ethanol stress resistance of Zygosaccharomyces rouxii. The result showed that co-culture with T. halophilus promoted cell survival of Z. rouxii under ethanol stress, and the tolerance improved with increasing co-culture time when ethanol content was 8%. Physiological analysis showed that the co-cultured Z. rouxii cells maintained higher intracellular content of trehalose and amino acids including tyrosine, tryptophan, arginine and proline after 8% ethanol stress for 90 min. The membrane integrity analysis and biophysical analysis of the cell surface indicated that the presence of ethanol resulted in cell membrane damage and changes of Young's modulus value and roughness of cell surface. While the co-cultured Z. rouxii cells exhibited better membrane integrity, stiffer and smoother cell surface than single-cultured cells under ethanol stress. As for transcriptomic analyses, the genes involved in unsaturated fatty acid biosynthesis, trehalose biosynthesis, various types of N-glycan biosynthesis, inositol phosphate metabolism, MAPK signaling pathway and tight junction had higher expression in co-cultured Z. rouxii cells with down-regulation of majority of gene expression after stress. And these genes may function in the improvement of ethanol tolerance of Z. rouxii in co-culture.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T, Wee Toong T, Yi NJ, Win Yi L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers (Basel) 2020; 13:E26. [PMID: 33374756 PMCID: PMC7795176 DOI: 10.3390/polym13010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
An optimal host-microbiota interaction in the human vagina governs the reproductive health status of a woman. The marked depletion in the beneficial Lactobacillus sp. increases the risk of infection with sexually transmitted pathogens, resulting in gynaecological issues. Vaginal infections that are becoming increasingly prevalent, especially among women of reproductive age, require an effective concentration of antimicrobial drugs at the infectious sites for complete disease eradication. Thus, topical treatment is recommended as it allows direct therapeutic action, reduced drug doses and side effects, and self-insertion. However, the alterations in the physiological conditions of the vagina affect the effectiveness of vaginal drug delivery considerably. Conventional vaginal dosage forms are often linked to low retention time in the vagina and discomfort which significantly reduces patient compliance. The lack of optimal prevention and treatment approaches have contributed to the unacceptably high rate of recurrence for vaginal diseases. To combat these limitations, several novel approaches including nano-systems, mucoadhesive polymeric systems, and stimuli-responsive systems have been developed in recent years. This review discusses and summarises the recent research progress of these novel approaches for vaginal drug delivery against various vaginal diseases. An overview of the concept and challenges of vaginal infections, anatomy and physiology of the vagina, and barriers to vaginal drug delivery are also addressed.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Azila Abdul-Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; or
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Bapi Gorain
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Teng Carine
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Tan Wee Toong
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Ngiam Jing Yi
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Lim Win Yi
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| |
Collapse
|
19
|
Soriano JL, Calpena AC, Rodríguez-Lagunas MJ, Domènech Ò, Bozal-de Febrer N, Garduño-Ramírez ML, Clares B. Endogenous Antioxidant Cocktail Loaded Hydrogel for Topical Wound Healing of Burns. Pharmaceutics 2020; 13:pharmaceutics13010008. [PMID: 33375069 PMCID: PMC7822007 DOI: 10.3390/pharmaceutics13010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The main goal of this work is the study of the skin wound healing efficacy of an antioxidant cocktail consisting of vitamins A, D, E and the endogenous pineal hormone melatonin (MLT), with all of these loaded into a thermosensitive hydrogel delivery system. The resulting formulation was characterized by scanning electron microscopy. The antioxidant efficacy and microbiological activity against Gram positive and Gram negative strains were also assayed. The skin healing efficacy was tested using an in vivo model which included histological evaluation. Furthermore, atomic force microscopy was employed to evaluate the wound healing efficacy of rat skin burns through the determination of its elasticity at the nanoscale using force spectroscopy analysis. The resulting hydrogel exhibited sol state at low temperature and turned into a gel at 30 ± 0.2 °C. The hydrogel containing the antioxidant cocktail showed higher scavenging activity than the hydrogel containing vitamins or MLT, separately. The formulation showed optimal antimicrobial activity. It was comparable to a commercial reference. It was also evidenced that the hydrogel containing the antioxidant cocktail exhibited the strongest healing process in the skin burns of rats, similar to the assayed commercial reference containing silver sulfadiazine. Histological studies confirmed the observed results. Finally, atomic force microscopy demonstrated a similar distribution of Young's modulus values between burned skin treated with the commercial reference and burned skin treated with hydrogel containing the antioxidant cocktail, and all these with healthy skin. The use of an antioxidant cocktail of vitamins and MLT might be a promising treatment for skin wounds for future clinical studies.
Collapse
Affiliation(s)
- José L. Soriano
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Ana C. Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (A.C.C.); (B.C.); Tel.: +34-934-024-560 (A.C.C.); +34-958-246-664 (B.C.)
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Òscar Domènech
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
| | - María L. Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, 62209 Cuernavaca, Mexico;
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Nanoscience & Nanotechnology Institute (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
- Correspondence: (A.C.C.); (B.C.); Tel.: +34-934-024-560 (A.C.C.); +34-958-246-664 (B.C.)
| |
Collapse
|
20
|
Sánchez-López E, Paús A, Pérez-Pomeda I, Calpena A, Haro I, Gómara MJ. Lipid Vesicles Loaded with an HIV-1 Fusion Inhibitor Peptide as a Potential Microbicide. Pharmaceutics 2020; 12:E502. [PMID: 32486415 PMCID: PMC7355883 DOI: 10.3390/pharmaceutics12060502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/21/2023] Open
Abstract
The effective use of fusion inhibitor peptides against cervical and colorectal infections requires the development of sustained release formulations. In this work we comparatively study two different formulations based on polymeric nanoparticles and lipid vesicles to propose a suitable delivery nanosystem for releasing an HIV-1 fusion inhibitor peptide in vaginal mucosa. Polymeric nanoparticles of poly-d,l-lactic-co-glycolic acid (PLGA) and lipid large unilamellar vesicles loaded with the inhibitor peptide were prepared. Both formulations showed average sizes and polydispersity index values corresponding to monodisperse systems appropriate for vaginal permeation. High entrapment efficiency of the inhibitor peptide was achieved in lipid vesicles, which was probably due to the peptide's hydrophobic nature. In addition, both nanocarriers remained stable after two weeks stored at 4 °C. While PLGA nanoparticles (NPs) did not show any delay in peptide release, lipid vesicles demonstrated favorably prolonged release of the peptide. Lipid vesicles were shown to improve the retention of the peptide on ex vivo vaginal tissue in a concentration sufficient to exert its pharmacological effect. Thus, the small size of lipid vesicles, their lipid-based composition as well as their ability to enhance peptide penetration on vaginal tissue led us to consider this formulation as a better nanosystem than polymeric nanoparticles for the sustained delivery of the HIV-1 fusion inhibitor peptide in vaginal tissues.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Anna Paús
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| | - Ignacio Pérez-Pomeda
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| | - Ana Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| | - María José Gómara
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| |
Collapse
|
21
|
Torrado JJ, Serrano DR, Capilla J. Antifungal and Antiparasitic Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12040324. [PMID: 32260348 PMCID: PMC7238172 DOI: 10.3390/pharmaceutics12040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Fungal and parasitic diseases affect more than a billion people across the globe, one-sixth of the world’s population, mostly located in developing countries. The lack of effective and safer treatments combined with a deficient diagnosis lead to serious chronic illness or even death. There is a mismatch between the rate of drug resistance and the development of new medicines. Formulation of antifungal and antiparasitic drugs adapted to different administration routes is challenging, bearing in mind their poor water solubility, which limits their bioavailability and efficacy. Hence, there is an unmet clinical need to develop vaccines and novel formulations and drug delivery strategies that can improve the bioavailability and therapeutic effect by enhancing their dissolution, increasing their chemical potency, stabilising the drug and targeting high concentration of drug to the infection sites. This Editorial regards the ten research contributions presented in the Special Issue “Antifungal and Antiparasitic Drug Delivery”.
Collapse
Affiliation(s)
- Juan José Torrado
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (J.J.T.); (D.R.S.)
| | - Dolores R. Serrano
- Departament of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (J.J.T.); (D.R.S.)
| | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili and Institut d’Investigació Sanitària Pere Virgili (IISPV), 43201 Reus, Spain;
| |
Collapse
|
22
|
Topical Pioglitazone Nanoformulation for the Treatment of Atopic Dermatitis: Design, Characterization and Efficacy in Hairless Mouse Model. Pharmaceutics 2020; 12:pharmaceutics12030255. [PMID: 32178278 PMCID: PMC7150908 DOI: 10.3390/pharmaceutics12030255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Pioglitazone (PGZ) is a drug used to treat type 2 diabetes mellitus that has been reported to show additional therapeutic activities on diverse inflammatory parameters. The aim of this study was to optimize a topical PGZ-loaded nanoemulsion (PGZ-NE) in order to evaluate its effectiveness for treating atopic dermatitis (AD). The composition of the nanoformulation was established by pseudo-ternary diagram. Parameters such as physical properties, stability, in vitro release profile, and ex vivo permeation were determined. The efficacy study was carried out using oxazolone-induced AD model in hairless mice. PGZ-NE released the drug following a hyperbolic kinetic. Additionally, its properties provided high retention potential of drug inside the skin. Therapeutic benefits of PGZ-NE were confirmed on diverse events of the inflammatory process, such as reduction of lesions, enhancement of skin barrier function, diminished infiltration of inflammatory cells, and expression of pro-inflammatory cytokines. These results were reinforced by atomic force microscope (AFM), which demonstrated the ability of the formulation to revert the rigidification caused by oxazolone and consequently improve the elasticity of the skin. These results suggest that PGZ-NE may be a promising treatment for inflammatory dermatological conditions such as AD.
Collapse
|
23
|
Topical Amphotericin B Semisolid Dosage Form for Cutaneous Leishmaniasis: Physicochemical Characterization, Ex Vivo Skin Permeation and Biological Activity. Pharmaceutics 2020; 12:pharmaceutics12020149. [PMID: 32059430 PMCID: PMC7076632 DOI: 10.3390/pharmaceutics12020149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the Leishmania infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical properties, stability, rheology and in vivo tolerance were assayed. Release and permeation studies were performed on nylon membranes and human skin, respectively. Toxicity was evaluated in macrophage and keratinocyte cell lines, and the activity against promastigotes and intracellular amastigotes of Leishmania infantum was studied. The AmB gel remained stable for a period of two months, with optimal properties for topical use and no apparent toxic effect on the cell lines. High amounts of AmB were found in damaged and non-damaged skin (1230.10 ± 331.52 and 2484.57 ± 439.12 µg/g/cm2, respectively) and they were above the IC50 of AmB for amastigotes. Although there were no differences in the in vitro anti-leishmanial activity between the AmB solution and gel, the formulation resulted in a higher amount of AmB being retained in the skin, and is therefore a candidate for further studies of in vivo efficacy.
Collapse
|
24
|
Development and Characterization of a Semi-Solid Dosage Form of Meglumine Antimoniate for Topical Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2019; 11:pharmaceutics11110613. [PMID: 31731660 PMCID: PMC6920791 DOI: 10.3390/pharmaceutics11110613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is treated with painful intralesional injections of meglumine antimoniate (MA). With the aim of developing an alternative topical treatment for CL, a gel-based formulation with 30% MA was prepared and its physicochemical properties, stability and rheological behavior were studied. The following were assessed: drug release on propylene hydrophilic membranes ex vivo human skin permeation, tolerance in healthy volunteers, cytotoxicity in three cell lines and anti-leishmanial activity against Leishmania infantum promastigotes and amastigotes. The MA gel formulation was found to have suitable pH, and good spreadability and stability. Low quantities of pentavalent antimony (SbV) were observed in release and permeation tests, whereas retention was high in both non-damaged and damaged skin (71,043.69 ± 10,641.57 and 10,728 ± 2254.61 µg/g/cm2 of SbV, respectively). The formulation did not have a toxic effect on the cell lines, and presented lower SbV IC50 values against amastigotes (15.76 ± 4.81 µg/mL) in comparison with the MA solution. The high amount of drug retained in the skin and the SbV IC50 values obtained suggest that this semi-solid dosage form has potential as an alternative treatment of CL.
Collapse
|