1
|
Cadot R, Gery P, Lenief V, Nicolas JF, Vocanson M, Tauber M. Exploring recent advances in drugs severe cutaneous adverse reactions immunopathology. Allergy 2024. [PMID: 39295209 DOI: 10.1111/all.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Severe cutaneous adverse reactions to drugs (SCARs) are rare but life-threatening delayed allergies. While they primarily affect the skin, they can also affect internal organs. Accordingly, they present with diverse clinical symptoms that vary not only between SCARs subtypes but also among patients. Despite the availability of topical and systemic treatments, these only address the symptoms and not the cause. To develop more effective therapies, it is necessary to elucidate the complexity of the pathophysiology of SCARs in relation to their severity. In line with the new type IV hypersensitivity reactions nomenclature proposed by the European Academy of Allergy and Clinical Immunology (EAACI), this review highlights the current insights into the intricate immune mechanisms engaged, the interplay between the culprit drug and genetic predisposition in drug presentation mechanisms, but also how external factors, such as viruses, are implicated in SCARs. Their relevance to the development of targeted medicine is also discussed.
Collapse
Affiliation(s)
- Romane Cadot
- CIRI-Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Perrine Gery
- CIRI-Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Vanina Lenief
- CIRI-Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Jean-François Nicolas
- CIRI-Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- CNRS, UMR 5308, Lyon, France
- Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
| | - Marc Vocanson
- CIRI-Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Marie Tauber
- CIRI-Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- CNRS, UMR 5308, Lyon, France
- Allergology and Clinical Immunology Department, Lyon Sud University Hospital, Pierre Bénite, France
- Reference center for toxic bullous dermatitis and severe cutaneous adverse reactions, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
2
|
Haukamp FJ, Hartmann ZM, Pich A, Kuhn J, Blasczyk R, Stieglitz F, Bade-Döding C. HLA-B*57:01/Carbamazepine-10,11-Epoxide Association Triggers Upregulation of the NFκB and JAK/STAT Pathways. Cells 2023; 12:cells12050676. [PMID: 36899812 PMCID: PMC10000580 DOI: 10.3390/cells12050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.
Collapse
Affiliation(s)
- Funmilola Josephine Haukamp
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-9774; Fax: +49-511-532-2079
| | - Zoe Maria Hartmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joachim Kuhn
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Florian Stieglitz
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christina Bade-Döding
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Wei C, Zhang J, Yin W, Jiang A, Liu Y, Wu B. A real-world pharmacovigilance study of severe cutaneous adverse reactions associated with antiepileptic drug combination therapy: data mining of FDA adverse event reporting system. Expert Opin Drug Saf 2022:1-7. [DOI: 10.1080/14740338.2023.2147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chunyan Wei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingyi Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Aidou Jiang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yin Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
4
|
Han J, Pan C, Tang X, Li Q, Zhu Y, Zhang Y, Liang A. Hypersensitivity reactions to small molecule drugs. Front Immunol 2022; 13:1016730. [PMID: 36439170 PMCID: PMC9684170 DOI: 10.3389/fimmu.2022.1016730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2024] Open
Abstract
Drug hypersensitivity reactions induced by small molecule drugs encompass a broad spectrum of adverse drug reactions with heterogeneous clinical presentations and mechanisms. These reactions are classified into allergic drug hypersensitivity reactions and non-allergic drug hypersensitivity reactions. At present, the hapten theory, pharmacological interaction with immune receptors (p-i) concept, altered peptide repertoire model, and altered T-cell receptor (TCR) repertoire model have been proposed to explain how small molecule drugs or their metabolites induce allergic drug hypersensitivity reactions. Meanwhile, direct activation of mast cells, provoking the complement system, stimulating or inhibiting inflammatory reaction-related enzymes, accumulating bradykinin, and/or triggering vascular hyperpermeability are considered as the main factors causing non-allergic drug hypersensitivity reactions. To date, many investigations have been performed to explore the underlying mechanisms involved in drug hypersensitivity reactions and to search for predictive and preventive methods in both clinical and non-clinical trials. However, validated methods for predicting and diagnosing hypersensitivity reactions to small molecule drugs and deeper insight into the relevant underlying mechanisms are still limited.
Collapse
Affiliation(s)
- Jiayin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol 2022; 15:715-728. [DOI: 10.1080/17512433.2022.2100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Fernandez‐Santamaria R, Ariza A, Fernandez TD, Cespedes JA, Labella M, Mayorga C, Torres MJ. Advances and highlights in T and B cell responses to drug antigens. Allergy 2022; 77:1129-1138. [PMID: 34617287 DOI: 10.1111/all.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/31/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
The immunological mechanisms involved in drug hypersensitivity reactions (DHRs) are complex, and despite important advances, multiple aspects remain poorly understood. These not fully known aspects are mainly related to the factors that drive towards either a tolerant or a hypersensitivity response and specifically regarding the role of B and T cells. In this review, we focus on recent findings on this knowledge area within the last 2 years. We highlight new evidences of covalent and non-covalent interactions of drug antigen with proteins, as well as the very first characterization of naturally processed flucloxacillin-haptenated human leukocyte antigen (HLA) ligands. Moreover, we have analysed new insights into the identification of risk factors associated with the development of DHRs, such as the role of oxidative metabolism of drugs in the activation of the immune system and the discovery of new associations between DHRs and HLA variants. Finally, evidence of IgG-mediated anaphylaxis in humans and the involvement of specific subpopulations of effector cells associated with different clinical entities are also topics explored in this review. All these recent findings are relevant for the underlying pathology mechanisms and advance the field towards a more precise diagnosis, management and treatment approach for DHRs.
Collapse
Affiliation(s)
| | - Adriana Ariza
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Departamento de Biología Celular Genética y Fisiología Universidad de Málaga Málaga Spain
| | - José A Cespedes
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Marina Labella
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
| | - Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - María J Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Medicina Universidad de Málaga Málaga Spain
| |
Collapse
|
7
|
Shafeng N, Han DF, Ma YF, Abudusalamu R, Ayitimuhan B. Association between the HLA-B*1502 gene and mild maculopapular exanthema induced by antiepileptic drugs in Northwest China. BMC Neurol 2021; 21:340. [PMID: 34488672 PMCID: PMC8422715 DOI: 10.1186/s12883-021-02363-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The relationship between the HLA-B*1502 gene and maculopapular exanthema (MPE) induced by antiepileptic drugs (AEDs) has not yet been elucidated. In this study, we investigated the association between AED-induced MPE (AED-MPE) and the HLA-B*1502 gene in patients in Northwest China. METHODS We enrolled 165 subjects including nine patients with AED-MPE and 156 AED-tolerant patients as controls. HLA-B*1502 gene polymorphism was detected using digital fluorescence molecular hybridization (DFMH). The results of HLA genotyping were expressed as positive or negative for the HLA-B*1502 allele. An analysis of AED-MPE risk factors was performed using binary logistic regression, and differences in genotype frequencies between groups were assessed with the continuity correction chi-square test. RESULTS We found that the HLA-B*1502 gene was a risk factor for AED-MPE (P = 0.028). The incidence of MPE induced by the two types of AEDs was different, and the incidence of aromatic AEDs use was higher that of non-aromatic AEDs use (P = 0.025). The comparison of the gene frequencies of the HLA-B*1502 allele between the two groups taking aromatic AEDs was also statistically significant (P = 0.045). However, there were no significant differences in terms of age, gender, ethnicity, or region in patients with MPE induced by AEDs. In addition, no association between the HLA-B1502 allele and CBZ- or OXC-induced MPE was found. CONCLUSIONS In northwestern China, the HLA-B*1502 allele was associated with aromatic AED-MPE. Since MPE can develop into Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN), the HLA-B*1502 gene should be evaluated before administering AEDs.
Collapse
Affiliation(s)
- Nilupaer Shafeng
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, Xinjiang Province, China
| | - Deng-Feng Han
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, Xinjiang Province, China.
| | - Yun-Fang Ma
- Department of Clinical Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Province, 830000, Urumqi, China
| | - Rena Abudusalamu
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, Xinjiang Province, China
| | - Binuer Ayitimuhan
- Department of Neurology, First Affiliated Hospital of Xinjiang Medical University, 830000, Urumqi, Xinjiang Province, China
| |
Collapse
|
8
|
Liu Y, Zeng X, Ouyang D. Progress in study on the association between HLA genetic variation and adverse drug reactions. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:404-413. [PMID: 33967088 PMCID: PMC10930308 DOI: 10.11817/j.issn.1672-7347.2021.200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 11/03/2022]
Abstract
The human leukocyte antigen (HLA) molecules encoded within the human major histocompatibility complex are a group of highly conserved cell surface proteins, which are related to antigen recognition. HLA genes display a high degree of genetic polymorphism, which is the basis of individual differences in immunity. Specific HLA genotypes have been highly associated with typical adverse drug reactions. HLA-A*31:01 and HLA-B*15:02 are associated with carbamazepine-induced severe cutaneous adverse reactions, HLA-B*57:01 is related to abacavir-induced drug-induced hypersensitivity syndrome and flucloxacillin/pazopanib-induced drug-induced liver injury, while HLA-B*35:01 is a potential biomarker for predicting polygonum multiflorum-induced liver injury. It is not clear how small drug molecules to interact with HLA molecules and T cell receptors (TCR). There are four mechanistic hypotheses, including the hapten/prohapten theory, the pharmacological interaction concept, the altered peptide repertoire model, and the altered TCR repertoire model.
Collapse
Affiliation(s)
- Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, China.
| |
Collapse
|
9
|
Nicholson WT, Formea CM, Matey ET, Wright JA, Giri J, Moyer AM. Considerations When Applying Pharmacogenomics to Your Practice. Mayo Clin Proc 2021; 96:218-230. [PMID: 33308868 DOI: 10.1016/j.mayocp.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 10/22/2022]
Abstract
Many practitioners who have not had pharmacogenomic education are required to apply pharmacogenomics to their practices. Although many aspects of pharmacogenomics are similar to traditional concepts of drug-drug interactions, there are some differences. We searched PubMed with the search terms pharmacogenomics and pharmacogenetics (January 1, 2005, through December 31, 2019) and selected articles that supported the application of pharmacogenomics to practice. For inclusion, we gave preference to national and international consortium guidelines for implementation of pharmacogenomics. We discuss special considerations important in the application of pharmacogenomics to assist clinicians with ordering, interpreting, and applying pharmacogenomics in their practices.
Collapse
Affiliation(s)
- Wayne T Nicholson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN.
| | - Christine M Formea
- Intermountain Healthcare Department of Pharmacy Services Pharmacy Services, Salt Lake City, UT; Intermountain Precision Genomics, Intermountain Healthcare, St George, UT
| | - Eric T Matey
- Department of Pharmacy, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Jessica A Wright
- Department of Pharmacy, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Jyothsna Giri
- Mayo Clinic Center for Individualized Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Unconventional Peptide Presentation by Classical MHC Class I and Implications for T and NK Cell Activation. Int J Mol Sci 2020; 21:ijms21207561. [PMID: 33066279 PMCID: PMC7590165 DOI: 10.3390/ijms21207561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022] Open
Abstract
T cell-mediated immune recognition of peptides is initiated upon binding of the antigen receptor on T cells (TCR) to the peptide-MHC complex. TCRs are typically restricted by a particular MHC allele, while polymorphism within the MHC molecule can affect the spectrum of peptides that are bound and presented to the TCR. Classical MHC Class I molecules have a confined binding groove that restricts the length of the presented peptides to typically 8-11 amino acids. Both N- and C-termini of the peptide are bound within binding pockets, allowing the TCR to dock in a diagonal orientation above the MHC-peptide complex. Longer peptides have been observed to bind either in a bulged or zig-zag orientation within the binding groove. More recently, unconventional peptide presentation has been reported for different MHC I molecules. Here, either N- or C-terminal amino acid additions to conventionally presented peptides induced a structural change either within the MHC I molecule that opened the confined binding groove or within the peptide itself, allowing the peptide ends to protrude into the solvent. Since both TCRs on T cells and killer immunoglobulin receptors on Natural Killer (NK) cells contact the MHC I molecule above or at the periphery of the peptide binding groove, unconventionally presented peptides could modulate both T cell and NK cell responses. We will highlight recent advances in our understanding of the functional consequences of unconventional peptide presentation in cellular immunity.
Collapse
|
11
|
Toussaint C, Sanchez-Pena P, Titier K, Castaing N, Molimard M, Milpied B. Toxicological screening reveals toxic epidermal necrolysis likely carbamazepine-induced rather than idiopathic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2075-2076. [DOI: 10.1016/j.jaip.2020.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022]
|
12
|
Cacabelos R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int J Mol Sci 2020; 21:E3059. [PMID: 32357528 PMCID: PMC7246738 DOI: 10.3390/ijms21093059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Symptomatic interventions for patients with dementia involve anti-dementia drugs to improve cognition, psychotropic drugs for the treatment of behavioral disorders (BDs), and different categories of drugs for concomitant disorders. Demented patients may take >6-10 drugs/day with the consequent risk for drug-drug interactions and adverse drug reactions (ADRs >80%) which accelerate cognitive decline. The pharmacoepigenetic machinery is integrated by pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes redundantly and promiscuously regulated by epigenetic mechanisms. CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 geno-phenotypes are involved in the metabolism of over 90% of drugs currently used in patients with dementia, and only 20% of the population is an extensive metabolizer for this tetragenic cluster. ADRs associated with anti-dementia drugs, antipsychotics, antidepressants, anxiolytics, hypnotics, sedatives, and antiepileptic drugs can be minimized by means of pharmacogenetic screening prior to treatment. These drugs are substrates, inhibitors, or inducers of 58, 37, and 42 enzyme/protein gene products, respectively, and are transported by 40 different protein transporters. APOE is the reference gene in most pharmacogenetic studies. APOE-3 carriers are the best responders and APOE-4 carriers are the worst responders; likewise, CYP2D6-normal metabolizers are the best responders and CYP2D6-poor metabolizers are the worst responders. The incorporation of pharmacogenomic strategies for a personalized treatment in dementia is an effective option to optimize limited therapeutic resources and to reduce unwanted side-effects.
Collapse
Affiliation(s)
- Ramon Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| |
Collapse
|