1
|
Hogan K, Cui X, Giangiacomo A, Feola AJ. Postmenopausal Hormone Therapy Was Associated With Later Age of Onset Among Glaucoma Cases. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 39172461 PMCID: PMC11346078 DOI: 10.1167/iovs.65.10.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Hormonal therapy (HT) has been suggested to lower the risk of developing glaucoma. Our goal was to investigate the association between HT use and the onset of glaucoma diagnosis in postmenopausal women. Methods This retrospective case-only study included female veterans with open-angle glaucoma from VA records between 2000 to 2019. Propensity score matching was used to match HT (n = 1926) users to untreated (n = 1026) women on multiple covariates (e.g., age of menopause, BMI, blood pressure, antihypertensive medications, and a co-morbidity index). A simple linear regression was used to evaluate the impact of HT duration on the age of glaucoma diagnosis, and multivariate linear regression analysis was used to determine which factors contributed to the age at diagnosis of glaucoma. Results We found a linear relationship between the age at diagnosis of glaucoma and menopause in women with (r = 0.54) and without HT (r = 0.57) use. HT users tended to have a later diagnosis of glaucoma. Our multivariate analysis found that 0-2 years, 2-5 years, and >5 years of HT use were associated with a 2.20 [confidence interval (CI), 1.64, 2.76], 3.74 [CI, 3.02, 4.46], and 4.51 [CI, 3.84, 5.18] years later diagnosis of glaucoma. An interaction (-0.009 [-0.015, -0.003]) was observed between HT duration and age of menopause diagnosis, with the impact of HT decreasing for later menopause ages. Conclusions Longer duration of HT use was associated with a later diagnosis of glaucoma in postmenopausal women in this case-only analysis. The impact of HT may be modulated by menopausal age, although further study is needed. The findings support a protective role of estrogen in glaucoma pathogenesis.
Collapse
Affiliation(s)
- Kelleigh Hogan
- Center for Visual and Neurocognitive Rehabilitation Atlanta VA Medical Center Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, United States
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiangqin Cui
- Center for Visual and Neurocognitive Rehabilitation Atlanta VA Medical Center Atlanta, GA, United States
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA, United States
| | - Annette Giangiacomo
- Technology-Based Eye Care Services Section, Regional Telehealth Services, VISN 7, Atlanta Veteran Affairs Health Care System, Atlanta, GA, United States
| | - Andrew J. Feola
- Center for Visual and Neurocognitive Rehabilitation Atlanta VA Medical Center Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta GA, United States
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
2
|
Kapic A, Zaman K, Nguyen V, Neagu GC, Sumien N, Prokai L, Prokai-Tatrai K. The Prodrug DHED Delivers 17β-Estradiol into the Retina for Protection of Retinal Ganglion Cells and Preservation of Visual Function in an Animal Model of Glaucoma. Cells 2024; 13:1126. [PMID: 38994978 PMCID: PMC11240555 DOI: 10.3390/cells13131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
We report a three-pronged phenotypic evaluation of the bioprecursor prodrug 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED) that selectively produces 17β-estradiol (E2) in the retina after topical administration and halts glaucomatous neurodegeneration in a male rat model of the disease. Ocular hypertension (OHT) was induced by hyperosmotic saline injection into an episcleral vein of the eye. Animals received daily DHED eye drops for 12 weeks. Deterioration of visual acuity and contrast sensitivity by OHT in these animals were markedly prevented by the DHED-derived E2 with concomitant preservation of retinal ganglion cells and their axons. In addition, we utilized targeted retina proteomics and a previously established panel of proteins as preclinical biomarkers in the context of OHT-induced neurodegeneration as a characteristic process of the disease. The prodrug treatment provided retina-targeted remediation against the glaucomatous dysregulations of these surrogate endpoints without increasing circulating E2 levels. Collectively, the demonstrated significant neuroprotective effect by the DHED-derived E2 in the selected animal model of glaucoma supports the translational potential of our presented ocular neuroprotective approach owing to its inherent therapeutic safety and efficacy.
Collapse
Affiliation(s)
- Ammar Kapic
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Vien Nguyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - George C Neagu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Proteomics-Based Identification of Retinal Protein Networks Impacted by Elevated Intraocular Pressure in the Hypertonic Saline Injection Model of Experimental Glaucoma. Int J Mol Sci 2023; 24:12592. [PMID: 37628770 PMCID: PMC10454042 DOI: 10.3390/ijms241612592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated intraocular pressure is considered a major cause of glaucomatous retinal neurodegeneration. To facilitate a better understanding of the underlying molecular processes and mechanisms, we report a study focusing on alterations of the retina proteome by induced ocular hypertension in a rat model of the disease. Glaucomatous processes were modeled through sclerosing the aqueous outflow routes of the eyes by hypertonic saline injections into an episcleral vein. Mass spectrometry-based quantitative retina proteomics using a label-free shotgun methodology identified over 200 proteins significantly affected by ocular hypertension. Various facets of glaucomatous pathophysiology were revealed through the organization of the findings into protein interaction networks and by pathway analyses. Concentrating on retinal neurodegeneration as a characteristic process of the disease, elevated intraocular pressure-induced alterations in the expression of selected proteins were verified by targeted proteomics based on nanoflow liquid chromatography coupled with nano-electrospray ionization tandem mass spectrometry using the parallel reaction monitoring method of data acquisition. Acquired raw data are shared through deposition to the ProteomeXchange Consortium (PXD042729), making a retina proteomics dataset on the selected animal model of glaucoma available for the first time.
Collapse
Affiliation(s)
| | | | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.)
| |
Collapse
|
4
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
5
|
Douglass A, Dattilo M, Feola AJ. Evidence for Menopause as a Sex-Specific Risk Factor for Glaucoma. Cell Mol Neurobiol 2023; 43:79-97. [PMID: 34981287 PMCID: PMC9250947 DOI: 10.1007/s10571-021-01179-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive loss of visual function and retinal ganglion cells (RGC). Current epidemiological, clinical, and basic science evidence suggest that estrogen plays a role in the aging of the optic nerve. Menopause, a major biological life event affecting all women, coincides with a decrease in circulating sex hormones, such as estrogen. While 59% of the glaucomatous population are females, sex is not considered a risk factor for developing glaucoma. In this review, we explore whether menopause is a sex-specific risk factor for glaucoma. First, we investigate how menopause is defined as a sex-specific risk factor for other pathologies, including cardiovascular disease, osteoarthritis, and bone health. Next, we discuss clinical evidence that highlights the potential role of menopause in glaucoma. We also highlight preclinical studies that demonstrate larger vision and RGC loss following surgical menopause and how estrogen is protective in models of RGC injury. Lastly, we explore how surgical menopause and estrogen signaling are related to risk factors associated with developing glaucoma (e.g., intraocular pressure, aqueous outflow resistance, and ocular biomechanics). We hypothesize that menopause potentially sets the stage to develop glaucoma and therefore is a sex-specific risk factor for this disease.
Collapse
Affiliation(s)
- Amber Douglass
- grid.484294.7Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA USA
| | - Michael Dattilo
- grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA 30322 USA ,grid.414026.50000 0004 0419 4084Department of Ophthalmology, Atlanta Veterans Affairs Medical Center, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Andrew J. Feola
- grid.484294.7Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, GA USA ,grid.189967.80000 0001 0941 6502Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, B2503, Clinic B Building, 1365B Clifton Road NE, Atlanta, GA 30322 USA ,grid.213917.f0000 0001 2097 4943Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| |
Collapse
|
6
|
Prokai-Tatrai K, Zaman K, Nguyen V, De La Cruz DL, Prokai L. Proteomics-Based Retinal Target Engagement Analysis and Retina-Targeted Delivery of 17β-Estradiol by the DHED Prodrug for Ocular Neurotherapy in Males. Pharmaceutics 2021; 13:1392. [PMID: 34575465 PMCID: PMC8466286 DOI: 10.3390/pharmaceutics13091392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/21/2022] Open
Abstract
We examined the impact of 17β-estradiol (E2) eye drops on the modulation of the proteome profile in the male rat retina. With discovery-driven proteomics, we have identified proteins that were regulated by our treatment. These proteins were assembled to several bioinformatics-based networks implicating E2's beneficial effects on the male rat retina in a broad context of ocular neuroprotection including the maintenance of retinal homeostasis, facilitation of efficient disposal of damaged proteins, and mitochondrial respiratory chain biogenesis. We have also shown for the first time that the hormone's beneficial effects on the male retina can be constrained to this target site by treatment with the bioprecursor prodrug, DHED. A large concentration of E2 was produced after DHED eye drops not only in male rat retinae but also in those of rabbits. However, DHED treatment did not increase circulating E2 levels, thereby ensuring therapeutic safety in males. Targeted proteomics focusing on selected biomarkers of E2's target engagement further confirmed the prodrug's metabolism to E2 in the male retina and indicated that the retinal impact of DHED treatment was identical to that of the direct E2 treatment. Altogether, our study shows the potential of topical DHED therapy for an efficacious and safe protection of the male retina without the unwanted hormonal side-effects associated with current estrogen therapies.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (K.Z.); (V.N.); (D.L.D.L.C.); (L.P.)
| | | | | | | | | |
Collapse
|
7
|
Proteomics Complementation of the Rat Uterotrophic Assay for Estrogenic Endocrine Disruptors: A Roadmap of Advancing High Resolution Mass Spectrometry-Based Shotgun Survey to Targeted Biomarker Quantifications. Int J Mol Sci 2021; 22:ijms22041686. [PMID: 33567512 PMCID: PMC7914934 DOI: 10.3390/ijms22041686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
The widely used rat uterotrophic assay to assess known and potential estrogenic compounds only considers uterine weight gain as endpoint measurement. To complement this method with an advanced technology that reveals molecular targets, we analyzed changes in protein expression using label-free quantitative proteomics by nanoflow liquid chromatography coupled with high-resolution mass spectrometry and tandem mass spectrometry from uterine protein extracts of ovariectomized rats after daily 17β-estradiol exposure for five days in comparison with those of vehicle-treated control animals. Our discovery-driven study revealed 165 uterine proteins significantly regulated by estrogen treatment and mapped by pathway analyses. Estrogen-regulated proteins represented cell death, survival and development, cellular growth and proliferation, and protein synthesis as top molecular and cellular functions, and a network found with the presence of nuclear estrogen receptor(s) as a prominent molecular node confirmed the relevance of our findings to hormone-associated events. An exploratory application of targeted proteomics to bisphenol A as a well-known example of an estrogenic endocrine disruptor is also presented. Overall, the results of this study have demonstrated the power of combining untargeted and targeted quantitative proteomic strategies to identify and verify candidate molecular markers for the evaluation of endocrine-disrupting chemicals to complement a conventional bioassay.
Collapse
|
8
|
Retina-Targeted Delivery of 17β-Estradiol by the Topically Applied DHED Prodrug. Pharmaceutics 2020; 12:pharmaceutics12050456. [PMID: 32429388 PMCID: PMC7284430 DOI: 10.3390/pharmaceutics12050456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to explore retina-targeted delivery of 17β-estradiol (E2), a powerful neuroprotectant, by its bioprecursor prodrug 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED) administered as eye drops in animal models. Compared to the parent hormone, DHED displayed increased transcorneal flux ex vivo both with and without the presence of 2-hydroxypropyl-β-cyclodextrin used as a penetration-enhancing excipient in rat, rabbit, and pig. In vitro, the prodrug also showed facile bioactivation to E2 in the retina but not in the cornea. After topical administration to rats and rabbits, peak DHED-derived E2 concentrations reached 13 ± 5 ng/g and 18 ± 7 ng/g in the retina of female rats and rabbits, respectively. However, the prodrug remained inert in the rest of the body and, therefore, did not cause increase in circulating hormone concentration, as well as wet uterine and anterior pituitary weights as typical markers of E2′s endocrine impact. Altogether, our studies presented here have demonstrated the premise of topical retina-selective estrogen therapy by the DHED prodrug approach for the first time and provide compelling support for further investigation into the full potential of DHED for an efficacious and safe ocular neurotherapy.
Collapse
|