1
|
Ding C, Wu Y, Zhan C, Naseem A, Chen L, Li H, Yang B, Liu Y. Research progress on the role and inhibitors of Keap1 signaling pathway in inflammation. Int Immunopharmacol 2024; 141:112853. [PMID: 39159555 DOI: 10.1016/j.intimp.2024.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Inflammation is a protective mechanism against endogenous and exogenous pathogens. It is a typical feature of numerous chronic diseases and their complications. Keap1 is an essential target in oxidative stress and inflammatory diseases. Among them, the Keap1-Nrf2-ARE pathway (including Keap1-Nrf2-HO-1) is the most significant pathway of Keap1 targets, which participates in the control of inflammation in multiple organs (including renal inflammation, lung inflammation, liver inflammation, neuroinflammation, etc.). Identifying new Keap1 inhibitors is crucial for new drug discovery. However, most drugs have specificity issues as they covalently bind to cysteine residues of Keap1, causing off-target effects. Therefore, direct inhibition of Keap1-Nrf2 PPIs is a new research idea. Through non-electrophilic and non-covalent binding, its inhibitors have better specificity and ability to activate Nrf2, and targeting therapy against Keap1-Nrf2 PPIs has become a new method for drug development in chronic diseases. This review summarizes the members and downstream genes of the Keap1-related pathway and their roles in inflammatory disease models. In addition, we summarize all the research progress of anti-inflammatory drugs targeting Keap1 from 2010 to 2024, mainly describing their biological functions, molecular mechanisms of action, and therapeutic roles in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Ding
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Ying Wu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Chaochao Zhan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Hao Y, Zhao B, Wu D, Ge X, Han J. Recombinant Humanized Collagen Type XVII Promotes Oral Ulcer Healing via Anti-Inflammation and Accelerate Tissue Healing. J Inflamm Res 2024; 17:4993-5004. [PMID: 39070128 PMCID: PMC11283806 DOI: 10.2147/jir.s470649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Recombinant humanized collagen, as a novel biomaterial, exhibits multiple excellent biological functions, such as inhibition of inflammation, promotion of cell proliferation and vascular proliferation, and promotion of tissue healing. However, there is a lack of conclusive evidence regarding the specific role of recombinant humanized collagen type 17 (rhCol 17) in oral ulcer healing. This study explored whether rhCol 17 could promote the proliferation of human gingival fibroblasts (HGFs) and inhibit its inflammation, and whether it could promote the healing of oral ulcers in rats by inhibiting inflammation and accelerating tissue healing. Methods At the cellular level, we investigated the effect of rhCol 17 on the proliferation of (HGFs) by CCK8; HGFs were mixed with lipopolysaccharide (LPS) to investigate the effect of rhCol 17 on HGFs in an inflammatory state. Eighteen adult male Sprague-Dawley rats were randomly distributed into three groups: blank control group, carbomer group (carbomer sprayed only), and rhCol 17 group (carbomer containing rhCol 17 sprayed), 1 time/day. The samples were collected at D3 and D5. At completion, histological staining and PCR were carried out to study its effect on the healing of oral ulcers in rats. Results Through cellular experiments, we found that rhCol 17 possesses good biocompatibility and anti-inflammatory properties, and can effectively promote the proliferation and migration of HGFs, as well as significantly reduce the inflammation level of the cells. The animal experimental results showed that rhCol 17 could significantly reduce the inflammation level, promote collagen deposition and angiogenesis at the ulcer site, thus effectively accelerating the healing of oral ulcers in rats. Conclusion In summary, the collagen sprays containing rhCol 17 have excellent anti-inflammatory effects and could accelerate tissue healing and are expected to provide a new effective treatment for patients with recurrent oral ulcers.
Collapse
Affiliation(s)
- Yukai Hao
- Department of Endodontics, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Baoling Zhao
- Department of Endodontics, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Dongchao Wu
- Department of Endodontics, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Xuejun Ge
- Department of Endodontics, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, People’s Republic of China
| | - Jianmin Han
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People’s Republic of China
| |
Collapse
|
3
|
Zhang S, Kong N, Wang Z, Zhang Y, Ni C, Li L, Wang H, Yang M, Yang W, Yan F. Nanochemistry of gold: from surface engineering to dental healthcare applications. Chem Soc Rev 2024; 53:3656-3686. [PMID: 38502089 DOI: 10.1039/d3cs00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advancements in nanochemistry have led to the development of engineered gold nanostructures (GNSs) with remarkable potential for a variety of dental healthcare applications. These innovative nanomaterials offer unique properties and functionalities that can significantly improve dental diagnostics, treatment, and overall oral healthcare applications. This review provides an overview of the latest advancements in the design, synthesis, and application of GNSs for dental healthcare applications. Engineered GNSs have emerged as versatile tools, demonstrating immense potential across different aspects of dentistry, including enhanced imaging and diagnosis, prevention, bioactive coatings, and targeted treatment of oral diseases. Key highlights encompass the precise control over GNSs' size, crystal structure, shape, and surface functionalization, enabling their integration into sensing, imaging diagnostics, drug delivery systems, and regenerative therapies. GNSs, with their exceptional biocompatibility and antimicrobial properties, have demonstrated efficacy in combating dental caries, periodontitis, peri-implantitis, and oral mucosal diseases. Additionally, they show great promise in the development of advanced sensing techniques for early diagnosis, such as nanobiosensor technology, while their role in targeted drug delivery, photothermal therapy, and immunomodulatory approaches has opened new avenues for oral cancer therapy. Challenges including long-term toxicity, biosafety, immune recognition, and personalized treatment are under rigorous investigation. As research at the intersection of nanotechnology and dentistry continues to thrive, this review highlights the transformative potential of engineered GNSs in revolutionizing dental healthcare, offering accurate, personalized, and minimally invasive solutions to address the oral health challenges of the modern era.
Collapse
Affiliation(s)
- Shuang Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
- Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Zezheng Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Can Ni
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Lingjun Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Hongbin Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Min Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Włodarczyk J, Krajewska J, Talar M, Szeleszczuk Ł, Gurba A, Lipiec S, Taciak P, Szczepaniak R, Młynarczuk-Biały I, Fichna J. New gold(III) complexes TGS 121, 404, and 702 show anti-tumor activity in colitis-induced colorectal cancer: an in vitro and in vivo study. Pharmacol Rep 2024; 76:127-139. [PMID: 38082190 PMCID: PMC10830623 DOI: 10.1007/s43440-023-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Chronic inflammation in the course of inflammatory bowel disease may result in colon cancer, or colitis-associated colorectal cancer (CACRC). It is well established that CACRC is associated with oxidative stress and secretion of multiple pro-inflammatory cytokines, e.g. tumor necrosis factor-α. Recently, we proved that the administration of gold(III) complexes resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the antitumor effect of a novel series of gold(III) complexes: TGS 121, 404, 512, 701, 702, and 703. MATERIALS Analyzed gold(III) complexes were screened in the in vitro studies using colorectal cancer and normal colon epithelium cell lines, SW480, HT-29, and CCD 841 CoN, and in vivo, in the CACRC mouse model. RESULTS Of all tested complexes, TGS 121, 404, and 702 exhibited the strongest anti-tumor effect in in vitro viability assay of colon cancer cell lines and in in vivo CACRC model, in which these complexes decreased the total number of colonic tumors and macroscopic score. We also evidenced that the mechanism of action was linked to the enzymatic antioxidant system and inflammatory cytokines. CONCLUSIONS TGS 121, 404, and 702 present anti-tumor potential and are an attractive therapeutic option for colorectal cancer.
Collapse
Affiliation(s)
- Jakub Włodarczyk
- Department of Biochemistry, Chair of Biochemistry and Chemistry, Faculty of Medicine, Medical University of Łódź, Mazowiecka 5, 92-215, Lodz, Poland
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
| | - Julia Krajewska
- Department of Biochemistry, Chair of Biochemistry and Chemistry, Faculty of Medicine, Medical University of Łódź, Mazowiecka 5, 92-215, Lodz, Poland
| | - Marcin Talar
- Department of Biochemistry, Chair of Biochemistry and Chemistry, Faculty of Medicine, Medical University of Łódź, Mazowiecka 5, 92-215, Lodz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093, Warsaw, Poland
| | - Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093, Warsaw, Poland
| | - Szymon Lipiec
- HESA at the Department for Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093, Warsaw, Poland
| | | | - Izabela Młynarczuk-Biały
- Department for Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Jakub Fichna
- Department of Biochemistry, Chair of Biochemistry and Chemistry, Faculty of Medicine, Medical University of Łódź, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
5
|
Choudhury M, Brunton P, Schwass D, Pletzer D, Ratnayake J, Dias G, Tompkins G. Effectiveness of gold nanoparticles in prevention and treatment of oral mucositis in animal models: a systematic review. Syst Rev 2024; 13:39. [PMID: 38273391 PMCID: PMC10809540 DOI: 10.1186/s13643-023-02425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Oral mucositis remains a significant complication during cancer therapy with no effective treatment. Gold nanoparticles offer anti-inflammatory, antioxidant properties with low toxicity. This study systematically reviews the literature assessing gold nanoparticles in the management of oral mucositis in animal models. METHODS A literature search was undertaken using MEDLINE, Embase, PubMed, and Web of Science databases, using the format for Systematic Review Centre for Laboratory Animal Experimentation. Prior to the review, the protocol was registered in the systematic review register, PROSPERO (registration no. CRD42021272169). Outcome measures included ulceration, histopathological scores, inflammatory mediators, microbial growth, and pain. Study quality was analysed by SYRCLE risk-of-bias tool. RESULTS Only one study met the inclusion criteria, documenting reduction in ulceration, inflammatory, and oxidative biomarkers. Exposure to AuNPs prevented inflammatory response induced by 5-fluorouracil in oral mucosa of hamsters. However, a high risk of bias necessitates further research. CONCLUSION This review identifies a potential therapeutic strategy for prevention and management of oral mucositis. It also provides future direction for gold nanoparticle research in oral mucositis; however, there is lack of sufficient evidence to derive any conclusion. Research with standardized parameters including nanoparticle size, capping agent, surface charge, and appropriate oral mucositis animal models will establish risk-benefit balance and margin of safety for therapeutic use of gold nanoparticles for oral mucositis.
Collapse
Affiliation(s)
- Minati Choudhury
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
- Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia.
| | - Paul Brunton
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
- DVCA, Curtin University, Perth, Australia
| | - Donald Schwass
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| | - Jithendra Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - George Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geoffrey Tompkins
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Barakat WEM, Moawed FSM, Ahmed ESA, Abo-Zaid OAR. The hepatotoxicity of γ-radiation synthesized 5-fluorouracil nanogel versus 5-fluorouracil in rats model. Int J Immunopathol Pharmacol 2024; 38:3946320241227099. [PMID: 38207276 PMCID: PMC10785744 DOI: 10.1177/03946320241227099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2023] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION The clinical use of 5-fluorouracil (5-FU), a routinely used chemotherapy medication, has a deleterious impact on the liver. Therefore, it is necessary to find a less harmful alternative to minimize liver damage. This study was designed to see how 5-fluorouracil nanogel influenced 5-FU-induced liver damage in rats. METHODS To induce liver damage, male albino rats were injected intraperitoneally with 5-FU (12.5 mg/kg) three doses/week for 1 month. The histopathological examination together with measuring the activities of serum alanine and aspartate aminotransferase enzymes (ALT and AST) were used to evaluate the severity of liver damage besides, hepatic oxidative stress and antioxidant markers were also measured. The hepatic gene expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α) and interleukins (IL-1β, IL-6) were detected. RESULTS 5-Fu nanogel effectively attenuated 5-FU-induced liver injury by improving the hepatic structure and function (ALT and AST) besides the suppression of the hepatic inflammatory mediators (TNF- α, IL-1β and IL-6). Additionally, 5-FU nanogel alleviated the impaired redox status and restored the antioxidant system via maintaining the cellular homeostasis Keap-1/Nrf2/HO-1 pathway. CONCLUSION Consequently, 5-Fu nanogel exhibited lower liver toxicity compared to 5-FU, likely due to the alleviation of hepatic inflammation and the regulation of the cellular redox pathway.
Collapse
Affiliation(s)
- Wael EM Barakat
- Biochemistry and Molecular Biology Department, Benha University Faculty of Veterinary Medicine, Benha, Egypt
| | - Fatma SM Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa SA Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Omayma AR Abo-Zaid
- Biochemistry and Molecular Biology Department, Benha University Faculty of Veterinary Medicine, Benha, Egypt
| |
Collapse
|
7
|
Zhang Q, Hou D, Wen X, Xin M, Li Z, Wu L, Pathak JL. Gold nanomaterials for oral cancer diagnosis and therapy: Advances, challenges, and prospects. Mater Today Bio 2022; 15:100333. [PMID: 35774196 PMCID: PMC9237953 DOI: 10.1016/j.mtbio.2022.100333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis and treatment of oral cancer are vital for patient survival. Since the oral cavity accommodates the second largest and most diverse microbiome community after the gut, the diagnostic and therapeutic approaches with low invasiveness and minimal damage to surrounding tissues are keys to preventing clinical intervention-related infections. Gold nanoparticles (AuNPs) are widely used in the research of cancer diagnosis and therapy due to their excellent properties such as surface-enhanced Raman spectroscopy, surface plasma resonance, controlled synthesis, the plasticity of surface morphology, biological safety, and stability. AuNPs had been used in oral cancer detection reagents, tumor-targeted therapy, photothermal therapy, photodynamic therapy, and other combination therapies for oral cancer. AuNPs-based noninvasive diagnosis and precise treatments further reduce the clinical intervention-related infections. This review is focused on the recent advances in research and application of AuNPs for early screening, diagnostic typing, drug delivery, photothermal therapy, radiotherapy sensitivity treatment, and combination therapy of oral cancer. Distinctive reports from the literature are summarized to highlight the latest advances in the development and application of AuNPs in oral cancer diagnosis and therapy. Finally, this review points out the challenges and prospects of possible applications of AuNPs in oral cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qing Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 BT Amsterdam, the Netherlands
| | - Dan Hou
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xueying Wen
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Mengyu Xin
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Ziling Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lihong Wu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| |
Collapse
|
8
|
Nguyen H, Sangha S, Pan M, Shin DH, Park H, Mohammed AI, Cirillo N. Oxidative Stress and Chemoradiation-Induced Oral Mucositis: A Scoping Review of In Vitro, In Vivo and Clinical Studies. Int J Mol Sci 2022; 23:4863. [PMID: 35563254 PMCID: PMC9101413 DOI: 10.3390/ijms23094863] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM's severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed "indirect evidence"). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (H.N.); (S.S.); (M.P.); (D.H.S.); (H.P.); (A.I.M.)
| |
Collapse
|
9
|
Geng QS, Liu RJ, Shen ZB, Wei Q, Zheng YY, Jia LQ, Wang LH, Li LF, Li J, Xue WH. Transcriptome sequencing and metabolome analysis reveal the mechanism of Shuanghua Baihe Tablet in the treatment of oral mucositis. Chin J Nat Med 2021; 19:930-943. [PMID: 34961591 DOI: 10.1016/s1875-5364(22)60150-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 12/22/2022]
Abstract
Oral mucositis (OM) caused by cancer therapy is the most common adverse reaction in the radiotherapy of head and neck tumors. In severe cases, it can lead to the interruption of treatment, which affects the control of the disease and the quality of life. Shuanghua Baihe Tablet (SBT) is a traditional Chinese medicine (TCM) formula, which is administerd to treat OM in China. It has been clinically effective for more than 30 years, but the underlying mechanism is not completely understood. With the development of multiple omics, it is possible to explore the mechanism of Chinese herbal compound prescriptions. Based on transcriptomics and metabolomics, we explored the underlying mechanism of SBT in the treatment of OM. An OM model of rats was established by 5-FU induction, and SBT was orally administered at dosages of 0.75 and 3 g·kg-1·d-1. In order to search for SBT targets and related metabolites, the dysregulated genes and metabolites were detected by transcriptomics and metabolomics. Immune related indicators such as interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α) were detected by ELISA. Treg cell disorders was analyzed by flow cytometry. Our results showed that SBT significantly alleviated the symptoms of OM rats and the inflammatory infiltration of ulcer tissues. After SBT administration, inflammatory related metabolic pathways including linoleic acid metabolism, valine, leucine and isoleucine biosynthesis were significantly altered. Furthermore, the production of proinflammatory factors like IL-17 and TNF-α, were also dramatically reduced after SBT administration. Besides, the infiltration degree of Treg cells in the spleen of OM modeling rats was significantly improved by SBT administration, thus maintaining the immune balance of the body. The current study demonstrates that SBT regulates inoleic acid metabolism, glycerophospholipid metabolism and amino acid metabolism, and inhibits IL-17/TNF signal transduction to restore Treg and Th17 cell homeostasis in OM rats, thereby alleviating chemotherapy-induced OM.
Collapse
Affiliation(s)
- Qi-Shun Geng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui-Juan Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-Bo Shen
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qian Wei
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuan-Yuan Zheng
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lan-Qi Jia
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Long-Hao Wang
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Li-Feng Li
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Wen-Hua Xue
- Engineering Laboratory for Digital Telemedicine Service, The first Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
10
|
El-Sherbiny M, Fahmy EK, Eisa NH, Said E, Elkattawy HA, Ebrahim HA, Elsherbiny NM, Ghoneim FM. Nanogold Particles Suppresses 5-Flurouracil-Induced Renal Injury: An Insight into the Modulation of Nrf-2 and Its Downstream Targets, HO-1 and γ-GCS. Molecules 2021; 26:molecules26247684. [PMID: 34946766 PMCID: PMC8707269 DOI: 10.3390/molecules26247684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
The development of the field of nanotechnology has revolutionized various aspects in the fields of modern sciences. Nano-medicine is one of the primary fields for the application of nanotechnology techniques. The current study sheds light on the reno-protective impacts of gold nano-particles; nanogold (AuNPs) against 5-flurouracil (5-FU)-induced renal toxicity. Indeed, the use of 5-FU has been associated with kidney injury which greatly curbs its therapeutic application. In the current study, 5-FU injection was associated with a significant escalation in the indices of renal injury, i.e., creatinine and urea. Alongside this, histopathological and ultra-histopathological changes confirmed the onset of renal injury. Both gene and/or protein expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and downstream antioxidant enzymes revealed consistent paralleled anomalies. AuNPs administration induced a significant renal protection on functional, biochemical, and structural levels. Renal expression of the major sensor of the cellular oxidative status Nrf-2 escalated with a paralleled reduction in the renal expression of the other contributor to this axis, known as Kelch-like ECH-associated protein 1 (Keap-1). On the level of the effector downstream targets, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (γ-GCS) AuNPs significantly restored their gene and protein expression. Additionally, combination of AuNPs with 5-FU showed better cytotoxic effect on MCF-7 cells compared to monotreatments. Thus, it can be inferred that AuNPs conferred reno-protective impact against 5-FU with an evident modulatory impact on Nrf-2/Keap-1 and its downstream effectors, HO-1 and γ-GCS, suggesting its potential use in 5-FU regimens to improve its therapeutic outcomes and minimize its underlying nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; (M.E.-S.); (H.A.E.)
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eslam K. Fahmy
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Medical Physiology Department, Faculty of Medicine, Northern Border University, Arar 91431, Saudi Arabia
| | - Nada H. Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
- Faculty of Pharmacy, New Mansoura University, New Mansoura 7723730, Egypt
| | - Hany A. Elkattawy
- Department of Basic Medical Sciences, College of Medicine, Almaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; (M.E.-S.); (H.A.E.)
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Zagazig Obesity Management & Research Unit, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Correspondence:
| | - Fatma M. Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| |
Collapse
|
11
|
de Morais SC, Bezerra BG, Castro BB, Balaban RDC. Evaluation of polyelectrolytic complexes based on poly(epichlorohydrin-co-dimethylamine) and poly (4-styrene-sulfonic acid-co-maleic acid) in the delivery of polyphosphates for the control of CaCO3 scale in oil wells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Makvandi P, Josic U, Delfi M, Pinelli F, Jahed V, Kaya E, Ashrafizadeh M, Zarepour A, Rossi F, Zarrabi A, Agarwal T, Zare EN, Ghomi M, Kumar Maiti T, Breschi L, Tay FR. Drug Delivery (Nano)Platforms for Oral and Dental Applications: Tissue Regeneration, Infection Control, and Cancer Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004014. [PMID: 33898183 PMCID: PMC8061367 DOI: 10.1002/advs.202004014] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/12/2020] [Indexed: 05/09/2023]
Abstract
The oral cavity and oropharynx are complex environments that are susceptible to physical, chemical, and microbiological insults. They are also common sites for pathological and cancerous changes. The effectiveness of conventional locally-administered medications against diseases affecting these oral milieus may be compromised by constant salivary flow. For systemically-administered medications, drug resistance and adverse side-effects are issues that need to be resolved. New strategies for drug delivery have been investigated over the last decade to overcome these obstacles. Synthesis of nanoparticle-containing agents that promote healing represents a quantum leap in ensuring safe, efficient drug delivery to the affected tissues. Micro/nanoencapsulants with unique structures and properties function as more favorable drug-release platforms than conventional treatment approaches. The present review provides an overview of newly-developed nanocarriers and discusses their potential applications and limitations in various fields of dentistry and oral medicine.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Uros Josic
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Masoud Delfi
- Department of Chemical SciencesUniversity of Naples “Federico II”Complesso Universitario Monte S. Angelo, Via CintiaNaples80126Italy
| | - Filippo Pinelli
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical EngineeringTarbiat Modares UniversityTehranIran
| | - Emine Kaya
- Faculty of DentistryIstanbul Okan UniversityTuzla CampusTuzlaIstanbul34959Turkey
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci UniversityOrta Mahalle, Üniversite Caddesi No. 27, OrhanlıTuzlaIstanbul34956Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Atefeh Zarepour
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical EngineeringPolitecnico di Milano Technical UniversityMilano20133Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM)TuzlaIstanbul34956Turkey
| | - Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | | | - Matineh Ghomi
- Chemistry Department, Faculty of ScienceShahid Chamran University of AhvazAhvaz6153753843Iran
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology KharagpurKharagpurWest Bengal721302India
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaVia San Vitale 59Bologna40125Italy
| | - Franklin R Tay
- The Dental College of GeorgiaAugusta University1430 John Wesley Gilbert DriveAugustaGA30192USA
- The Graduate SchoolAugusta UniversityAugustaGA30912USA
| |
Collapse
|
13
|
Ribeiro SB, de Araújo AA, Oliveira MMB, dos Santos Silva AM, da Silva-Júnior AA, Guerra GCB, Brito GADC, Leitão RFDC, de Araújo Júnior RF, Garcia VB, Vasconcelos RC, de Medeiros CACX. Effect of Dexamethasone-Loaded PLGA Nanoparticles on Oral Mucositis Induced by 5-Fluorouracil. Pharmaceutics 2021; 13:53. [PMID: 33406583 PMCID: PMC7823510 DOI: 10.3390/pharmaceutics13010053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/06/2023] Open
Abstract
Oral mucositis (OM) is characterized by the presence of severe ulcers in the oral region that affects patients treated with chemotherapy. It occurs in almost all patients who receive radiotherapy of the head and neck, as well as patients who undergo hematopoietic cell transplantation. The pathophysiology of OM is complex, and there is no effective therapy. The aim of this study was to evaluate the effect of dexamethasone-loaded poly(d,l-Lactic-co-glycolic) nanoparticles (PLGA-DEX NPs) on an OM model induced in hamsters. The NPs were synthesized using the emulsification-solvent evaporation method and were characterized by the size, zeta potential, encapsulation efficiency, atomic force microscopy, physicochemical stability, and the in vitro release. The OM was induced by the administration of 5-FU on the first and second days and mechanical trauma on the 4th day of the experiment. PLGA-DEX NPs were administered to treat OM. The animals were euthanized on the 10th day. Macroscopic and histopathological analyses were performed, measurement of malonaldehyde (MDA) and ELISA was used to determine the levels of IL-1β and TNF-α. Immunoexpressions of NF-κB, COX-2, and TGF-β were determined by immunohistochemistry, and qRT-PCR was used to quantify the gene expression of the GILZ, MKP1, and NF-κB p65. The PLGA-DEX NPs (0.1 mg/kg) significantly reduced macroscopic and histopathological scores, decreased MDA, TNF-α and IL-1β levels, immunostaining for NF-κB, COX-2, TGF-β, and suppressed NF-κB p65 mRNA expression, but increased GILZ and MKP1 expression.
Collapse
Affiliation(s)
- Susana Barbosa Ribeiro
- Post Graduate Program Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil; (S.B.R.); (M.M.B.O.)
| | - Aurigena Antunes de Araújo
- Post Graduate Program Dental Sciences, Post Graduate Program Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil;
| | - Maisie Mitchele Barbosa Oliveira
- Post Graduate Program Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil; (S.B.R.); (M.M.B.O.)
| | - Alaine Maria dos Santos Silva
- Laboratory of Pharmaceutical Technology & Biotechnology (TecBioFar), Post Graduate Program Pharmaceutical Sciences, Pharmacy Department, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Faria St, Petrópolis, Natal RN 59012-570, Brazil; (A.M.d.S.S.); (A.A.d.S.-J.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology & Biotechnology (TecBioFar), Post Graduate Program Pharmaceutical Sciences, Pharmacy Department, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Faria St, Petrópolis, Natal RN 59012-570, Brazil; (A.M.d.S.S.); (A.A.d.S.-J.)
| | - Gerlane Coelho Bernardo Guerra
- Post Graduate Program Biochemistry and Molecular Biology, Post Graduate Program Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil;
| | - Gerly Anne de Castro Brito
- Post Graduate Program Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Delmiro de Farias St, Rodolfo Teófilo, Fortaleza CE 60416-030, Brazil; (G.A.d.C.B.); (R.F.d.C.L.)
| | - Renata Ferreira de Carvalho Leitão
- Post Graduate Program Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará, Delmiro de Farias St, Rodolfo Teófilo, Fortaleza CE 60416-030, Brazil; (G.A.d.C.B.); (R.F.d.C.L.)
| | - Raimundo Fernandes de Araújo Júnior
- Post Graduate Program Functional and Structural Biology, Post Graduate Program Health Science, Department of Morphology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil;
| | - Vinícius Barreto Garcia
- Post Graduate Program Health Science, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Faria St, Petrópolis, Natal RN 59012-570, Brazil;
| | | | - Caroline Addison Carvalho Xavier de Medeiros
- Post Graduate Program Biotechnology-RENORBIO, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil; (S.B.R.); (M.M.B.O.)
- Post Graduate Program Biochemistry and Molecular Biology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 3000 Senador Salgado Filho Ave, Lagoa Nova, Natal RN 59078-970, Brazil
| |
Collapse
|