1
|
Cai L, Xu L, Shen K, Wang Q, Ni R, Xu X, Ma X. Sophorae tonkinensis radix polysaccharide attenuates acetaminophen-induced liver injury by regulating the miR-140-5p-related antioxidant mechanism. J Tradit Complement Med 2024; 14:467-476. [PMID: 39035693 PMCID: PMC11259709 DOI: 10.1016/j.jtcme.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 07/23/2024] Open
Abstract
STRP1, a polysaccharide active ingredient isolated from the traditional Chinese medicine Sophorae tonkinensis radix, has demonstrated a protective effect against acetaminophen (APAP)-induced liver injury (AILI). The underlying molecular mechanism was investigated in this study. Here, an acute liver damage mouse model was generated by APAP (400 mg/kg) and used to identify the protective effect of STRP1 (200 mg/kg) on mouse livers. In vitro cell experiments were used to further verify the related signaling pathways. Initially, in our study, STRP1 treatment reduced APAP-induced liver injury by decreasing aminotransferase activity and cell apoptosis and increasing cell proliferation. Furthermore, STRP1 treatment significantly increased Nrf2 expression and alleviated oxidative stress caused by reactive oxygen species in AILI. Based on bioinformatics and experimental studies, miR-140-5p was identified and found to be reduced by STRP1, increasing Nrf2 expression. Additionally, Nrf2 played an important role in the protective impact of STRP1-suppressed miR-140-5p expression. Generally, these results showed that STRP1-mediated suppression of miR-140-5p expression mitigates AILI by activating the Nrf2-mediated Nrf2-Keap1 pathway. This study revealed that STRP1 might be a potential treatment agent for AILI.
Collapse
Affiliation(s)
- Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Lixing Xu
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, PR China
| | - Kai Shen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Qin Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Ronghua Ni
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Xin Xu
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| | - Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, 226001, PR China
| |
Collapse
|
2
|
Wang F, Hang L, Dai B, Li F, Zhu Y, Jia H, Ai Y, Wang L, Xue Y, Yuan H. Characterization of herpetrione amorphous nanoparticles stabilized by hydroxypropylmethyl cellulose and its absorption mechanism in vitro. Int J Biol Macromol 2024; 268:131744. [PMID: 38663711 DOI: 10.1016/j.ijbiomac.2024.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Herpetrione(HPE) is an effective compound that has been used in the treatment of liver diseases. To improve its dissolution and absorption, herpetrione nanosuspensions was prepared. Nanosuspensions were proved to achieve intact absorption in vivo. However, the transport mechanisms are not fully understood, especially lack of direct evidence of translocation of particulates. In this study, an environment-responsive dye, P4, was loaded into herpetrione amorphous nanoparticles (HPE-ANPs) to elucidate the absorption and transport mechanism of the nanoparticles. And the amount of HPE and nanoparticles in the samples were quantified using HPLC/LC-MS/MS and IVIS with the model of Caco-2 and Caco-2/HT29-MTX. Results demonstrated that HPE is mainly taken up by passive diffusion in the form of free drugs, while HPE-ANPs are internalized by an energy dependent active transport pathway or intracellular endocytosis. It is speculated that HPE-ANPs may change the original entry pathway of drug molecules. Furthermore, the presence of mucus layer and the use of HPMC E15 may contribute to drug absorption to some extent. Transcellular transport study indicates that HPE-ANPs has a poor absorption. In conclusion, the differences in the absorption behavior trends of HPE-ANPs are caused by the difference in particle properties and the form of existence of the drug.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China; School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Bo Dai
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Fangqin Li
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Yuwen Zhu
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Haiqiang Jia
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China; School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Yu Ai
- Bohai (Tianjin) Medical Laboratory, Tianjin 300400, China
| | - Liqiang Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China.
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China.
| |
Collapse
|
3
|
Tran TTV, Tayara H, Chong KT. Recent Studies of Artificial Intelligence on In Silico Drug Absorption. J Chem Inf Model 2023; 63:6198-6211. [PMID: 37819031 DOI: 10.1021/acs.jcim.3c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Absorption is an important area of research in pharmacochemistry and drug development, because the drug has to be absorbed before any drug effects can occur. Furthermore, the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profile of drugs can be directly and considerably altered by modulating factors affecting absorption. Many drugs in development fail because of poor absorption. The research and continuous efforts of researchers in recent years have brought many successes and promises in drug absorption property prediction, especially in silico, which helps to reduce the time and cost significantly for screening undesirable drug candidates. In this report, we explicitly provide an overview of recent in silico studies on predicting absorption properties, especially from 2019 to the present, using artificial intelligence. Additionally, we have collected and investigated public databases that support absorption prediction research. On those grounds, we also proposed the challenges and development directions of absorption prediction in the future. We hope this review can provide researchers with valuable guidelines on absorption prediction to facilitate the development of newer approaches in drug discovery.
Collapse
Affiliation(s)
- Thi Tuyet Van Tran
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Faculty of Information Technology, An Giang University, Long Xuyen 880000, Vietnam
- Vietnam National University, Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Park SB, Jung WH, Choi KJ, Koh B, Kim KY. A Comparative Systematic Analysis of The Influence of Microplastics on Colon Cells, Mouse and Colon Organoids. Tissue Eng Regen Med 2023; 20:49-58. [PMID: 36374371 PMCID: PMC9852409 DOI: 10.1007/s13770-022-00496-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Microplastics (MPs) are small fragments from any type of plastic formed from various sources, including plastic waste and microfibers from clothing. MPs degrades slowly, resulting in a high probability of human inhalation, ingestion and accumulation in bodies and tissues. As its impact on humans is a prolonged event, the evaluation of its toxicity and influence on human health are critical. In particular, MPs can enter the human digestive system through food and beverage consumption, and its effect on the human colon needs to be carefully examined. METHODS We monitored the influence of small MPs (50 and 100 nm) on human colon cells, human colon organoids and also examined their toxicity and changes in gene expression in vivo in a mouse model. RESULTS The data suggested that 5 mg/mL concentrations of 50 and 100 nm MPs induced a > 20% decrease in colon organoid viability and an increase in the expression of inflammatory-, apoptosis- and immunity-related genes. In addition, in vivo data suggested that 50 nm MPs accumulate in various mouse organs, including the colon, liver, pancreas and testicles after 7 d of exposure. CONCLUSION Taken together, our data suggest that smaller MPs can induce more toxic effects in the human colon and that human colon organoids have the potential to be used as a predictive tool for colon toxicity.
Collapse
Affiliation(s)
- Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Won Hoon Jung
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Kyoung Jin Choi
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Byumseok Koh
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
5
|
Rants’o TA, van Greunen DG, van der Westhuizen CJ, Riley DL, Panayides JL, Koekemoer LL, van Zyl RL. The in silico and in vitro analysis of donepezil derivatives for Anopheles acetylcholinesterase inhibition. PLoS One 2022; 17:e0277363. [PMID: 36350894 PMCID: PMC9645637 DOI: 10.1371/journal.pone.0277363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Current studies on Anopheles anticholinesterase insecticides are focusing on identifying agents with high selectivity towards Anopheles over mammalian targets. Acetylcholinesterase (AChE) from electric eel is often used as the bioequivalent enzyme to study ligands designed for activity and inhibition in human. In this study, previously identified derivatives of a potent AChE, donepezil, that have exhibited low activity on electric eel AChE were assessed for potential AChE-based larvicidal effects on four African malaria vectors; An. funestus, An. arabiensis, An. gambiae and An. coluzzii. This led to the identification of four larvicidal agents with a lead molecule, 1-benzyl-N-(thiazol-2-yl) piperidine-4-carboxamide 2 showing selectivity for An. arabiensis as a larvicidal AChE agent. Differential activities of this molecule on An. arabiensis and electric eel AChE targets were studied through molecular modelling. Homology modelling was used to generate a three-dimensional structure of the An. arabiensis AChE for this binding assay. The conformation of this molecule and corresponding interactions with the AChE catalytic site was markedly different between the two targets. Assessment of the differences between the AChE binding sites from electric eel, human and Anopheles revealed that the electric eel and human AChE proteins were very similar. In contrast, Anopheles AChE had a smaller cysteine residue in place of bulky phenylalanine group at the entrance to the catalytic site, and a smaller aspartic acid residue at the base of the active site gorge, in place of the bulky tyrosine residues. Results from this study suggest that this difference affects the ligand orientation and corresponding interactions at the catalytic site. The lead molecule 2 also formed more favourable interactions with An. arabiensis AChE model than other Anopheles AChE targets, possibly explaining the observed selectivity among other assessed Anopheles species. This study suggests that 1-benzyl-N-(thiazol-2-yl) piperidine-4-carboxamide 2 may be a lead compound for designing novel insecticides against Anopheles vectors with reduced toxic potential on humans.
Collapse
Affiliation(s)
- Thankhoe A. Rants’o
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Divan G. van Greunen
- Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, Tshwane, South Africa
| | - C. Johan van der Westhuizen
- Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, Tshwane, South Africa
- Pharmaceutical Technologies, CSIR Future Production: Chemicals, Tshwane, South Africa
| | - Darren L. Riley
- Department of Chemistry, Natural and Agricultural Sciences, University of Pretoria, Tshwane, South Africa
| | - Jenny-Lee Panayides
- Pharmaceutical Technologies, CSIR Future Production: Chemicals, Tshwane, South Africa
| | - Lizette L. Koekemoer
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robyn L. van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Kilford PJ, Chen K, Crewe K, Gardner I, Hatley O, Ke AB, Neuhoff S, Zhang M, Rowland Yeo K. Prediction of CYP‐mediated DDIs involving inhibition: Approaches to address the requirements for system qualification of the Simcyp Simulator. CPT Pharmacometrics Syst Pharmacol 2022; 11:822-832. [PMID: 35445542 PMCID: PMC9286715 DOI: 10.1002/psp4.12794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Physiologically‐based pharmacokinetic (PBPK) modeling is being increasingly used in drug development to avoid unnecessary clinical drug–drug interaction (DDI) studies and inform drug labels. Thus, regulatory agencies are recommending, or indeed requesting, more rigorous demonstration of the prediction accuracy of PBPK platforms in the area of their intended use. We describe a framework for qualification of the Simcyp Simulator with respect to competitive and mechanism‐based inhibition (MBI) of CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19, and CYP3A4/5. Initially, a DDI matrix, consisting of a range of weak, moderate, and strong inhibitors and substrates with varying fraction metabolized by specific CYP enzymes that were susceptible to different degrees of inhibition, were identified. Simulations were run with 123 clinical DDI studies involving competitive inhibition and 78 clinical DDI studies involving MBI. For competitive inhibition, the overall prediction accuracy was good with an average fold error (AFE) of 0.91 and 0.92 for changes in the maximum plasma concentration (Cmax) and area under the plasma concentration (AUC) time profile, respectively, as a consequence of the DDI. For MBI, an AFE of 1.03 was determined for both Cmax and AUC. The prediction accuracy was generally comparable across all CYP enzymes, irrespective of the isozyme and mechanism of inhibition. These findings provide confidence in application of the Simcyp Simulator (V19 R1) for assessment of the DDI potential of drugs in development either as inhibitors or victim drugs of CYP‐mediated interactions. The approach described herein and the identified DDI matrix can be used to qualify subsequent versions of the platform.
Collapse
Affiliation(s)
| | | | - Kim Crewe
- Certara UK Limited (Simcyp Division)SheffieldUK
| | | | | | | | | | - Mian Zhang
- Certara UK Limited (Simcyp Division)SheffieldUK
| | | |
Collapse
|
7
|
|
8
|
Abd Mutalib N, Ariffin Mohd Rafi MA, Abd Latip N. Revisiting CYP2C9-Mediated drug-drug Interactions: A Review. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2021:6166-6172. [DOI: 10.52711/0974-360x.2021.01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Drug-drug interactions (DDI) are the most common cases that occur in our healthcare in which are very alarming as it may lead to severe complications. Consumption of natural products concomitantly with conventional drugs or treatment using polypharmacy have become the norm that promoting the potential of pharmacokinetic or pharmacodynamic drug interactions as the combination may mimic, increase or reduce the effects of the drug or the herb which could result in clinically significant interactions. CYP2C9 is the second major isoform from CYP450 family of enzyme, which responsible in phase 1 metabolism of 15-20% clinical drugs. Up to date, many substrates of CYP2C9 have been discovered and these discoveries may open more doors for potential drug-drug interactions in patients. Many studies have been done to evaluate the effect of drugs on the activity of CYP2C9 and how it influenced the effectiveness of therapy in patients. Various data regarding CYP2C9 related DDI from in vitro, in vivo and clinical studies were critically discussed in this review to provide insights on how these drugs and natural products may exhibit drug interactions clinically. This review could be beneficial reference material for health practitioners and researchers.
Collapse
Affiliation(s)
- Nurliana Abd Mutalib
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Mohd Amirul Ariffin Mohd Rafi
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Normala Abd Latip
- Atta-Ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM) Cawangan Selangor, 42300 Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Vicente-Pascual M, Rodríguez-Gascón A, Garelli S, Battaglia L, del Pozo-Rodríguez A, Solinís MÁ. mRNA-Based Nanomedicinal Products to Address Corneal Inflammation by Interleukin-10 Supplementation. Pharmaceutics 2021; 13:1472. [PMID: 34575548 PMCID: PMC8466377 DOI: 10.3390/pharmaceutics13091472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory cytokine Interleukin-10 (IL-10) is considered an efficient treatment for corneal inflammation, in spite of its short half-life and poor eye bioavailability. In the present work, mRNA-based nanomedicinal products based on solid lipid nanoparticles (SLNs) were developed in order to produce IL-10 to treat corneal inflammation. mRNA encoding green fluorescent protein (GFP) or human IL-10 was complexed with different SLNs and ligands. After, physicochemical characterization, transfection efficacy, intracellular disposition, cellular uptake and IL-10 expression of the nanosystems were evaluated in vitro in human corneal epithelial (HCE-2) cells. Energy-dependent mechanisms favoured HCE-2 transfection, whereas protein production was influenced by energy-independent uptake mechanisms. Nanovectors with a mean particle size between 94 and 348 nm and a positive superficial charge were formulated as eye drops containing 1% (w/v) of polyvinyl alcohol (PVA) with 7.1-7.5 pH. After three days of topical administration to mice, all formulations produced GFP in the corneal epithelium of mice. SLNs allowed the obtaining of a higher transfection efficiency than naked mRNA. All formulations produce IL-10, and the interleukin was even observed in the deeper layers of the epithelium of mice depending on the formulation. This work shows the potential application of mRNA-SLN-based nanosystems to address corneal inflammation by gene augmentation therapy.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Sara Garelli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (S.G.); (L.B.)
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (S.G.); (L.B.)
| | - Ana del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|