1
|
Keßler L, Luxenhofer R. Melt electrowriting of amorphous solid dispersions: Influence of drug and plasticizer on rheology and printing performance. Int J Pharm 2025; 671:125188. [PMID: 39798624 DOI: 10.1016/j.ijpharm.2025.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Drug loaded microfiber scaffolds have potential for sublingual or buccal drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (Tg) just above room temperature, making handling challenging. For this reason, ABA triblock copolymers bearing poly(2-oxazoline) and poly(2-oxazine) with slightly higher Tg were synthesized and their processability into drug loaded microfiber scaffolds was assessed. Additionally, plasticizers commonly used in drug products were added to decrease the fabrication temperature. The aim was to investigate the influence of plasticizers on the melt viscosity and printability to expand the polymer platform for the preparation of drug loaded microfiber scaffolds. Temperature dependent melt rheology measurements of the polymers and their mixtures revealed a drop in viscosity by one order of magnitude by the addition of triethyl citrate and ethylene glycol, respectively. Addition of the model drug indomethacin led to a further decrease in viscosity. Even though the drug loaded samples were printable with and without the addition of triethyl citrate, better fiber stacking and therefore improved printing results were obtained with the plasticizer added. However, the addition of the plasticizer did alter the dissolution profile for some of the polymer samples, leading to longer dissolution times or lower drug release compared to the samples without plasticizer, which makes it difficult to predict the influence of the plasticizer on the dissolution profile.
Collapse
Affiliation(s)
- Larissa Keßler
- Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland.
| |
Collapse
|
2
|
Chakraborty S, Bansal AK. Application of atomic force microscopy in the development of amorphous solid dispersion. J Pharm Sci 2025; 114:70-81. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
3
|
Meloni V, Halstenberg L, Mareczek L, Lu J, Liang B, Gottschalk N, Mueller LK. Exploring Orodispersible Films Containing the Proteolysis Targeting Chimera ARV-110 in Hot Melt Extrusion and Solvent Casting Using Polyvinyl Alcohol. Pharmaceutics 2024; 16:1499. [PMID: 39771478 PMCID: PMC11678735 DOI: 10.3390/pharmaceutics16121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This project aims to provide valuable insights into the formulation of orodispersible films (ODFs) for the delivery of PROTAC ARV-110. The primary objective of this drug delivery formulation is to enhance the solubility of PROTAC ARV-110, which faces significant challenges due to the low solubility of this active pharmaceutical ingredient, as it belongs to a molecular class that is considered to exceed the "Rule of Five". METHODS We employed the concept of developing a rapidly disintegrating ODF to enhance the solubility of PROTAC ARV-110, utilizing polyvinyl alcohol as the polymer of choice. Given the high thermal stability of ARV-110, the PROTAC was subjected to two primary ODF manufacturing techniques: Hot melt extrusion (HME) and solvent casting. To establish the HME method, pre-screening through vacuum compression molding was performed. The films were characterized based on their disintegration in artificial saliva, drug release in a physiological environment, and mechanical strength. RESULTS All formulations demonstrated enhanced solubility of ARV-110, achieving exceptional results in terms of disintegration times and resistance to applied stress. CONCLUSIONS The findings from the experiments outlined herein establish a solid foundation for the successful production of orodispersible films for the delivery of PROTACs.
Collapse
Affiliation(s)
- Valentina Meloni
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | | | - Lena Mareczek
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| | - Jankin Lu
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Bonnie Liang
- Merck Chemicals (Shanghai) Co., Ltd., Shanghai 201203, China
| | | | - Lena K. Mueller
- Merck Life Science KGaA, 64293 Darmstadt, Germany; (V.M.); (L.K.M.)
| |
Collapse
|
4
|
Badruddoza AZM, Moseson DE, Lee HG, Esteghamatian A, Thipsay P. Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. Int J Pharm 2024; 664:124651. [PMID: 39218326 DOI: 10.1016/j.ijpharm.2024.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Dana E Moseson
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Hong-Guann Lee
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Amir Esteghamatian
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Priyanka Thipsay
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
5
|
Handa U, Malik A, Guarve K, Rani N, Sharma P. Supersaturation Behavior: Investigation of Polymers Impact on Nucleation Kinetic Profile for Rationalizing the Polymeric Precipitation Inhibitors. Curr Drug Deliv 2024; 21:1422-1432. [PMID: 37907490 DOI: 10.2174/0115672018261505231018100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 09/01/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Although nucleation kinetic data is quite important for the concept of supersaturation behavior, its part in rationalizing the crystallization inhibitor has not been well understood. OBJECTIVE This study aimed to investigate the nucleation kinetic profile of Dextromethorphan HBr (as an ideal drug, BCS-II) by measuring liquid-liquid phase segregation, nucleation induction time, and Metastable Zone width. METHODS Surfeit action was examined by a superfluity assay of the drug. The concentration was scrutinized by light scattering techniques (UV spectrum (novel method) and Fluorometer (CL 53)). RESULTS The drug induction time was 20 min without polymer and 90 and 110 min with polymers, such as HPMC K15M and Xanthan Gum, respectively. Therefore, the order of the polymer's ability to inhibit nucleation was Xanthan Gum > HPMC K15M in the medium (7.4 pH). Similarly, the drug induction time was 30 min without polymer and 20, 110, and 90 min with polymers, such as Sodium CMC, HPMC K15M, and Xanthan Gum, respectively. Therefore, the order of the polymer's ability to inhibit nucleation was HPMC K15M > Xanthan Gum > Sodium CMC in SIFsp (6.8 pH), which synchronizes the polymer's potentiality to interdict the drug precipitation. CONCLUSION The HPMC K15M and xanthan Gum showed the best crystallization inhibitor effect for the maintenance of superfluity conditions till the drug absorption time. The xanthan gum is based on the "glider" concept, and this shows the novelty of this preliminary research. The screening methodology used for rationalizing the best polymers used in the superfluity formulations development successfully.
Collapse
Affiliation(s)
- Uditi Handa
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
- Department of Pharmaceutics, MM College of Pharmacy, MM (DU), Mullana, Ambala, Haryana, India
| | - Anuj Malik
- Department of Pharmaceutics, MM College of Pharmacy, MM (DU), Mullana, Ambala, Haryana, India
| | - Kumar Guarve
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Prerna Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar-135001, Haryana, India
| |
Collapse
|
6
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
7
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
8
|
Pöstges F, Kayser K, Appelhaus J, Monschke M, Gütschow M, Steinebach C, Wagner KG. Solubility Enhanced Formulation Approaches to Overcome Oral Delivery Obstacles of PROTACs. Pharmaceutics 2023; 15:pharmaceutics15010156. [PMID: 36678785 PMCID: PMC9863516 DOI: 10.3390/pharmaceutics15010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development. Therefore, we investigated the solubility enhancement employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing, HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs were subsequently characterized with respect to their solid state via differential scanning calorimetry (DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome the low solubility of PROTACs.
Collapse
Affiliation(s)
- Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Jan Appelhaus
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Steinebach
- Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: (C.S.); (K.G.W.); Tel.: +49-228-73-2308 (C.S.); +49-228-73-5271 (K.G.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- Correspondence: (C.S.); (K.G.W.); Tel.: +49-228-73-2308 (C.S.); +49-228-73-5271 (K.G.W.)
| |
Collapse
|
9
|
Jagadeeswari V, Sahoo A. An overview on dry powder coating in advancement to electrostatic dry powder coating used in pharmaceutical industry. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Salave S, Prayag K, Rana D, Amate P, Pardhe R, Jadhav A, Jindal AB, Benival D. Recent Progress in Hot Melt Extrusion Technology in Pharmaceutical Dosage Form Design. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:170-191. [PMID: 35986528 DOI: 10.2174/2667387816666220819124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Hot Melt Extrusion (HME) technique has shown tremendous potential in transforming highly hydrophobic crystalline drug substances into amorphous solids without using solvents. This review explores in detail the general considerations involved in the process of HME, its applications and advances. OBJECTIVE The present review examines the physicochemical properties of polymers pertinent to the HME process. Theoretical approaches for the screening of polymers are highlighted as a part of successful HME processed drug products. The critical quality attributes associated with the process of HME are also discussed in this review. HME plays a significant role in the dosage form design, and the same has been mentioned with suitable examples. The role of HME in developing several sustained release formulations, films, and implants is described along with the research carried out in a similar domain. METHODS The method includes the collection of data from different search engines like PubMed, ScienceDirect, and SciFinder to get coverage of relevant literature for accumulating appropriate information regarding HME, its importance in pharmaceutical product development, and advanced applications. RESULTS HME is known to have advanced pharmaceutical applications in the domains related to 3D printing, nanotechnology, and PAT technology. HME-based technologies explored using Design-of- Experiments also lead to the systematic development of pharmaceutical formulations. CONCLUSION HME remains an adaptable and differentiated technique for overall formulation development.
Collapse
Affiliation(s)
- Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kedar Prayag
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Prakash Amate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rupali Pardhe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Ajinkya Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani, Rajasthan, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
11
|
Formulating a heat- and shear-labile drug in an amorphous solid dispersion: Balancing drug degradation and crystallinity. Int J Pharm X 2021; 3:100092. [PMID: 34977559 PMCID: PMC8683684 DOI: 10.1016/j.ijpx.2021.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
We seek to further addresss the questions posed by Moseson et al. regarding whether any residual crystal level, size, or characteristic is acceptable in an amorphous solid dispersion (ASD) such that its stability, enhanced dissolution, and increased bioavailability are not compromised. To address this highly relevant question, we study an interesting heat- and shear-labile drug in development, LY3009120. To study the effects of residual crystallinity and degradation in ASDs, we prepared three compositionally identical formulations (57–1, 59–4, and 59–5) using the KinetiSol process under various processing conditions to obtain samples with various levels of crystallinity (2.3%, 0.9%, and 0.1%, respectively) and degradation products (0.74%, 1.97%, and 3.12%, respectively). Samples with less than 1% crystallinity were placed on stability, and we observed no measurable change in the drug's crystallinity, dissolution profile or purity in the 59–4 and 59–5 formulations over four months of storage under closed conditions at 25 °C and 60% humidity. For formulations 57–1, 59–4, and 59–5, bioavailability studies in rats reveal a 44-fold, 55-fold, and 62-fold increase in mean AUC, respectively, compared to the physical mixture. This suggests that the presence of some residual crystals after processing can be acceptable and will not change the properties of the ASD over time.
Collapse
|
12
|
Jiang T, Han L, Lu E, He W, Du S, Sha X. Design and Characterization of HY-038 Solid Dispersions via Spray Drying Technology: In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2021; 22:267. [PMID: 34750638 DOI: 10.1208/s12249-021-02135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to prepare HY-038 solid dispersions (SDs) with single carrier at high drug loading and then forming a tablet to enhance solubility, dissolution, and bioavailability via spray drying technology. At the same time, we hope to develop a more convenient in vitro method to predict the absorption behavior of different formulations in vivo. Different solid dispersions, varying in drug/polymer ratios, were prepared. Infrared spectroscopy, differential scanning calorimetry, scanning electron microscope, and X-ray diffraction were used to perform solid-state characterizations of the pure drug and SDs. Contact angle of water, dissolution in pH = 6.8 phosphate buffer, and in vivo absorption in dogs were studied. As a result, solid-state characterization demonstrated the transformation of the crystalline HY-038 to an amorphous state in the solid dispersions, and the in vivo exposure followed with the trend of the dissolution curve combined with contact angle. Compared with the prototype formulation, the Cmax and AUC0-∞ of optimized formulation SD2 (HY-038-HPMCAS 3:1) increased by about 5 ~ 9 times at the same dose. More importantly, the SD2 formulation showed approximately linear increases in Cmax and AUC0-∞ as the dose increased from 50 to 100 mg, while the prototype formulation reached absorption saturation at 50 mg. SD2 (HY-038-HPMCAS 3:1) was selected as the best formulation for the downstream development.
Collapse
|
13
|
Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance. Adv Drug Deliv Rev 2021; 177:113923. [PMID: 34390775 DOI: 10.1016/j.addr.2021.113923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022]
Abstract
Materials and manufacturing processes share a common purpose of enabling the pharmaceutical product to perform as intended. This review on the role of polymeric materials in additive manufacturing of oral dosage forms, focuses on the interface between the polymer and key stages of the additive manufacturing process, which determine printability. By systematically clarifying and comparing polymer functional roles and properties for a variety of AM technologies, together with current and emerging techniques to characterize these properties, suggestions are provided to stimulate the use of readily available and sometimes underutilized pharmaceutical polymers in additive manufacturing. We point to emerging characterization techniques and digital tools, which can be harnessed to manage existing trade-offs between the role of polymers in printer compatibility versus product performance. In a rapidly evolving technological space, this serves to trigger the continued development of 3D printers to suit a broader variety of polymers for widespread applications of pharmaceutical additive manufacturing.
Collapse
|
14
|
Tsiaxerli A, Karagianni A, Ouranidis A, Kachrimanis K. Polyelectrolyte Matrices in the Modulation of Intermolecular Electrostatic Interactions for Amorphous Solid Dispersions: A Comprehensive Review. Pharmaceutics 2021; 13:pharmaceutics13091467. [PMID: 34575543 PMCID: PMC8468962 DOI: 10.3390/pharmaceutics13091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/05/2022] Open
Abstract
Polyelectrolyte polymers have been widely used in the pharmaceutical field as excipients to facilitate various drug delivery systems. Polyelectrolytes have been used to modulate the electrostatic environment and enhance favorable interactions between the drug and the polymer in amorphous solid dispersions (ASDs) prepared mainly by hot-melt extrusion. Polyelectrolytes have been used alone, or in combination with nonionic polymers as interpolyelectrolyte complexes, or after the addition of small molecular additives. They were found to enhance physical stability by favoring stabilizing intermolecular interactions, as well as to exert an antiplasticizing effect. Moreover, they not only enhance drug dissolution, but they have also been used for maintaining supersaturation, especially in the case of weakly basic drugs that tend to precipitate in the intestine. Additional uses include controlled and/or targeted drug release with enhanced physical stability and ease of preparation via novel continuous processes. Polyelectrolyte matrices, used along with scalable manufacturing methods in accordance with green chemistry principles, emerge as an attractive viable alternative for the preparation of ASDs with improved physical stability and biopharmaceutic performance.
Collapse
Affiliation(s)
- Anastasia Tsiaxerli
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
| | - Andreas Ouranidis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.T.); (A.K.); (A.O.)
- Correspondence: ; Tel.: +30-2310-997666
| |
Collapse
|
15
|
Kapote DN, Wagner KG. Shellac- a natural carrier for colon targeting of indomethacin using hot melt extrusion. Drug Dev Ind Pharm 2021; 47:748-757. [PMID: 34038307 DOI: 10.1080/03639045.2021.1934863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Indomethacin (IND) is one of the supporting drug candidates for colonic targeting but it belongs to BCS class II category presenting a challenge in optimal targeting at the colonic site. To overcome this challenge, we sought to prepare a pH-dependent soluble ternary solid dispersion (SD) of IND of improved solubility and dissolution rate at the colon without the need for a coating. The current study focuses on the preparation of binary SDs of API (IND) with shellac (SSB 55) and Eudragit FS 100 (EFS) and ternary mixtures of IND, SSB 55 together with a new grade of HPMC (A15). Respective SDs were prepared via HME to achieve gastric protection and improved dissolution performance including maintenance of supersaturation. The SDs were characterized and tested for in-vitro dissolution performance using a pH shift dissolution method from 1.1, 5.5, 6.8, and 7.4. A ternary extrudate of IND, SSB 55, and A15 showed improved protection below pH 5.5 with a complete release of 99.5% at pH 7.4 compared to IND neat and binary extrudates from IND-A15, IND-SSB 55, and IND-EFS. It was attributed to an increased level of intermolecular interaction confirmed by ATR-IR and was studied for stability. It was found that in a ternary mixture containing IND, A15 and SSB 55 an increased hydrogen bonding interaction is present, which resulted in improved dissolution performance compared to binary mixtures. Therefore, ternary SDs proved to be a promising concept for future development of colon targeting of poorly soluble drugs.
Collapse
Affiliation(s)
- Dnyaneshwar N Kapote
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Bachmaier RD, Monschke M, Faber T, Krome AK, Pellequer Y, Stoyanov E, Lamprecht A, Wagner KG. In vitro and in vivo assessment of hydroxypropyl cellulose as functional additive for enabling formulations containing itraconazole. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100076. [PMID: 33851133 PMCID: PMC8024662 DOI: 10.1016/j.ijpx.2021.100076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022]
Abstract
Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore, we investigated the influence of low-viscosity hydroxypropyl cellulose (HPC) polymers as an additive in HPMC based ternary ASD formulations made by hot-melt extrusion (HME) on the bioavailability of itraconazole (ITZ). The partitioning potential of the different HPC grades was screened in biphasic supersaturation assays. Solid-state analytics were performed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD). The addition of HPCs, especially HPC-UL, resulted in a superior partitioned amount of ITZ in biphasic supersaturation assays. Moreover, the approach in using HPCs as an additive in HPMC based ASDs led to an increase in partitioned ITZ compared to Sporanox® in biorelevant biphasic dissolution studies. The results from the biphasic dissolution experiments correlated well with the in vivo studies, which revealed the highest oral bioavailability for the ternary ASD comprising HPC-UL and HPMC. Increased partitioning rate of itraconazole using low-viscosity HPC polymers. Enhanced bioavailability of itraconazole using HPC-UL as functional additive. Ternary amorphous solid dispersion with higher performance than Sporanox®.
Collapse
Key Words
- API, active pharmaceutical ingredient
- ASD, amorphous solid dispersion
- AUC, area under the curve
- AcN, acetonitrile
- Amorphous solid dispersion
- BCS, biopharmaceutical classification system
- Biphasic dissolution
- DMSO, dimethyl sulfoxide
- DSC, differential scanning calorimetry
- FaSSIF, fasted state simulated intestinal fluid
- GI, gastrointestinal
- HME, hot-melt extrusion
- HPC
- HPC, hydroxypropyl cellulose
- HPMC
- HPMC, hydroxypropyl methyl cellulose
- Hot-melt extrusion
- ITZ, itraconazole
- KTZ, ketoconazole
- NCE, new chemical entity
- OH-ITZ, hydroxy-itraconazole
- PM, physical mixture
- SD, spray-drying
- TG, glass transition temperature
- XRPD, x-ray powder diffraction
Collapse
Affiliation(s)
- Rafael D Bachmaier
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Thilo Faber
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Anna K Krome
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Yann Pellequer
- UFR Santé, Laboratoire de Pharmacie Galénique, 19, rue Ambroise Paré, 25000 Besancon, France
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany.,UFR Santé, Laboratoire de Pharmacie Galénique, 19, rue Ambroise Paré, 25000 Besancon, France
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
17
|
Monschke M, Kayser K, Wagner KG. Influence of Particle Size and Drug Load on Amorphous Solid Dispersions Containing pH-Dependent Soluble Polymers and the Weak Base Ketoconazole. AAPS PharmSciTech 2021; 22:44. [PMID: 33438107 PMCID: PMC7803674 DOI: 10.1208/s12249-020-01914-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Among the great number of poorly soluble drugs in pharmaceutical development, most of them are weak bases. Typically, they readily dissolve in an acidic environment but are prone to precipitation at elevated pH. This was aimed to be counteracted by the preparation of amorphous solid dispersions (ASDs) using the pH-dependent soluble polymers methacrylic acid ethylacrylate copolymer (Eudragit L100-55) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) via hot-melt extrusion. The hot-melt extruded ASDs were of amorphous nature and single phased with the presence of specific interactions between drug and polymer as revealed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR). The ASDs were milled and classified into six particle size fractions. We investigated the influence of particle size, drug load, and polymer type on the dissolution performance. The best dissolution performance was achieved for the ASD made from Eudragit L100-55 at a drug load of 10%, whereby the dissolution rate was inversely proportional to the particle size. Within a pH-shift dissolution experiment (from pH 1 to pH 6.8), amorphous-amorphous phase separation occurred as a result of exposure to acidic medium which caused markedly reduced dissolution rates at subsequent higher pH values. Phase separation could be prevented by using enteric capsules (Vcaps Enteric®), which provided optimal dissolution profiles for the Eudragit L100-55 ASD at a drug load of 10%.
Collapse
Affiliation(s)
- Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany.
| |
Collapse
|
18
|
Matić J, Alva C, Witschnigg A, Eder S, Reusch K, Paudel A, Khinast J. Towards predicting the product quality in hot-melt extrusion: Small scale extrusion. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2020; 2:100062. [PMID: 33299982 PMCID: PMC7704403 DOI: 10.1016/j.ijpx.2020.100062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/02/2022]
Abstract
In product development, it is crucial to choose the appropriate drug manufacturing route accurately and timely and to ensure that the technique selected is suitable for achieving the desired product quality. Guided by the QbD principles, the pharmaceutical industry is currently transitioning from batch to continuous manufacturing. In this context, process understanding and prediction are becoming even more important. With regard to hot melt extrusion, the process setup, optimization and scale-up in early stages of product development are particularly challenging due to poor process understanding, complex product-process relationship and a small amount of premix available for extensive experimental studies. Hence, automated, quick and reliable process setup and scale-up requires simulation tools that are accurate enough to capture the process and determine the product-process relationships. To this end, the effect of process settings on the degradation of the active pharmaceutical ingredient (API) in a lab-scale Leistritz ZSE12 extruder was investigated. As part of the presented study, the limitations of traditional process analysis using integral process values were investigated, together with the potential that simulations may have in predicting the process performance and the product quality. The results of our investigation indicate that the average melt temperatures and the exposure times in specific zones along the screw configuration correlate well with the API degradation values and can be used as potent process design criteria to simplify the process development.
Collapse
Affiliation(s)
- Josip Matić
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Andreas Witschnigg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Simone Eder
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Kathrin Reusch
- Leistritz Pharma Extrusion, Markgrafenstraße, 29-39 1, 90459 Nürnberg, Germany
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
19
|
Zhang Z, Dong L, Guo J, Li L, Tian B, Zhao Q, Yang J. Prediction of the physical stability of amorphous solid dispersions: relationship of aging and phase separation with the thermodynamic and kinetic models along with characterization techniques. Expert Opin Drug Deliv 2020; 18:249-264. [PMID: 33112679 DOI: 10.1080/17425247.2021.1844181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Solid dispersion has been considered to be one of the most promising methods for improving the solubility and bioavailability of insoluble drugs. However, the physical stability of solid dispersions (SDs), including its aging and recrystallization, or phase separation, has always been one of the most challenging problems in the process of formulation development and storage.Areas covered: The high energy state of SDs is one of the primary reasons for the poor physical stability. The factors affecting the physical stability of SDs have been described from the perspective of thermodynamics and kinetics, and the corresponding theoretical model is put forward. We briefly summarize several commonly used techniques to characterize the thermodynamic and kinetic properties of SDs. Specific measures to improve the physical stability of SDs have been proposed from the perspective of prescription screening, process parameters, and storage conditions.Expert opinion: The separation of the drug from the polymer, the formation, and migration of drug crystals will cause the SDs to shift toward the direction of energy reduction, which is the intrinsic cause of instability. Furthermore, computational simulation can be used for efficient and rapid screening suitable for the excipients to improve the physical stability of SDs.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Luning Dong
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
20
|
Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm 2020; 586:119560. [PMID: 32565285 PMCID: PMC8691091 DOI: 10.1016/j.ijpharm.2020.119560] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 01/24/2023]
Abstract
Amorphous solid dispersions (ASDs) are being employed frequently to improve bioavailability of poorly soluble molecules by enhancing the rate and extant of dissolution in drug product development process. These systems comprise of an amorphous active pharmaceutical ingredient stabilized by a polymer matrix to provide enhanced stability. This review discussed the methodologies of preparation and characterization of ASDs with an emphasis on understanding and predicting stability. Rational selection of polymers, preparation techniques with its advantages and disadvantages and characterization of polymeric amorphous solid dispersions have discussed. Stability aspects have been described as per ICH guidelines which intend to depend on selection of polymers and preparation methods of ASD. The mechanism involved on improvement of bioavailability also considered. Regulatory importance of ASD and current evolving details of QBD approach were reviewed. Amorphous products and particularly ASDs are currently most emerging area in the pharmaceutical field. This strategic approach presents huge impact and advantageous features concerning the overall improvement of drug product performance in clinical settings which ultimately lead to drug product approval by leading regulatory agencies into the market.
Collapse
Affiliation(s)
- Palpandi Pandi
- Department of Pharmacy, Employee State Insurance Corporation Medical College and Hospital, Chennai 600078, India
| | - Raviteja Bulusu
- Department of Pharmaceutics, Jawaharlal Nehru Technological University, Kakinada 533003, India
| | - Nagavendra Kommineni
- College of Pharmacy, Florida Agriculture and Mechanical University, FL 32307, USA
| | - Wahid Khan
- Natco Research Centre, NATCO Pharma Limited, Hyderabad 500018, India.
| | - Mandip Singh
- College of Pharmacy, Florida Agriculture and Mechanical University, FL 32307, USA.
| |
Collapse
|
21
|
Preparation of Hot-Melt Extruded Dosage Form for Enhancing Drugs Absorption Based on Computational Simulation. Pharmaceutics 2020; 12:pharmaceutics12080757. [PMID: 32796665 PMCID: PMC7463902 DOI: 10.3390/pharmaceutics12080757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to control the dissolution rate and permeability of cilostazol. To enhance the dissolution rate of the active pharmaceutical ingredient (API), hot-melt extrusion (HME) technology was applied to prepare a solid dispersion (SD). To control permeability in the gastrointestinal tract regardless of food intake, the HME process was optimized based on physiologically based pharmacokinetic (PBPK) simulation. The extrudates were produced using a laboratory-scale twin-screw hot-melt extruder with co-rotatory screws and a constant feeding rate. Next, for PBPK simulation, parameter-sensitive analysis (PSA) was conducted to determine the optimization approach direction. As demonstrated by the dissolution test, the solubility of extrudate was enhanced comparing cilostazol alone. Based on the PSA analysis, the surfactant induction was a crucial factor in cilostazol absorption; thus, an extrudate with an even distribution of lipids was produced using hot-melt extrusion technology, for inducing the bile salts in the gastrointestinal tract. In vivo experiments with rats demonstrated that the optimized hot-melt extruded formulation was absorbed more rapidly with lower deviation and regardless of the meal consumed when compared to marketed cilostazol formulations.
Collapse
|
22
|
Impact of HPMCAS on the Dissolution Performance of Polyvinyl Alcohol Celecoxib Amorphous Solid Dispersions. Pharmaceutics 2020; 12:pharmaceutics12060541. [PMID: 32545270 PMCID: PMC7356348 DOI: 10.3390/pharmaceutics12060541] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Amorphous solid dispersions (ASDs) have been proven to increase the bioavailability of poorly soluble drugs. It is desirable that the ASD provide a rapid dissolution rate and a sufficient stabilization of the generated supersaturation. In many cases, one polymer alone is not able to provide both features, which raises a need for reasonable polymer combinations. In this study we aimed to generate a rapidly dissolving ASD using the hydrophilic polymer polyvinyl alcohol (PVA) combined with a suitable precipitation inhibitor. Initially, PVA and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were screened for their precipitation inhibitory potential for celecoxib in solution. The generated supersaturation in presence of PVA or HPMCAS was further characterized using dynamic light scattering. Binary ASDs of either PVA or HPMCAS (at 10% and 20% drug load) were prepared by hot-melt extrusion and solid-state analytics were conducted using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and fourier-transformed infrared spectroscopy (FT-IR). The non-sink dissolution studies of the binary ASDs revealed a high dissolution rate for the PVA ASDs with subsequent precipitation and for the HPMCAS ASDs a suppressed dissolution. In order to utilize the unexploited potential of the binary ASDs, the PVA ASDs were combined with HPMCAS either predissolved or added as powder and also formulated as ternary ASD. We successfully generated a solid formulation consisting of the powdered PVA ASD and HPMCAS powder, which was superior in monophasic non-sink dissolution and biorelevant biphasic dissolution studies compared to the binary and ternary ASDs.
Collapse
|