1
|
Sher EK, Kalić A, Džidić-Krivić A, Zećo MB, Pinjić E, Sher F. Cellular therapeutic potential of genetically engineered stem cells in cancer treatment. Biotechnol Genet Eng Rev 2024; 40:4062-4097. [PMID: 37132363 DOI: 10.1080/02648725.2023.2204720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
Traditional therapeutic approaches in the treatment of cancer have many side effects and are often ineffective and non-specific, leading to the development of therapy-resistant tumour cells. Recently, numerous discoveries about stem cells have given a new outlook on their application in oncology. Stem cells are unique because of their biological attributes, including self-renewal, differentiation in different types of specialized cells and synthesis of molecules that interplay with tumour niche. They are already used as an effective therapeutic option for haematological malignancies, such as multiple myeloma and leukaemia. The main goal of this study is to investigate the possible applications of different types of stem cells in cancer treatment and to summarize novel advances, as well as the limitations of their application in cancer treatment. Research and clinical trials that are underway revealed and confirmed the enormous potential of regenerative medicine in the treatment of cancer, especially when combined with different nanomaterials. Nanoengineering of stem cells has been the focus of novel studies in the area of regenerative medicine, such as the production of nanoshells and nanocarriers that enhance the transport and uptake of stem cells in their targeted tumour niche and enable the effective monitoring of stem cell effects on tumour cells. Although nanotechnology has a lot of limitations, it provides new opportunities for the development of effective and innovative stem cell therapies.
Collapse
Affiliation(s)
- Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Azra Kalić
- Faculty of pharmacy, University of modern sciences - CKM, Mostar, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- International Society of Engineering Science and Technology, Nottingham, UK
- Department of Neurology, Cantonal Hospital Zenica, Zenica, Bosnia and Herzegovina
| | - Merima Beća- Zećo
- Faculty of pharmacy, University of modern sciences - CKM, Mostar, Bosnia and Herzegovina
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Emma Pinjić
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
2
|
Stella GM, Lisini D, Pedrazzoli P, Galli G, Bortolotto C, Melloni G, D’Ambrosio G, Klersy C, Grosso A, Paino F, Tomaselli S, Saracino L, Alessandri G, Pessina A, Grignani E, Rosti V, Corsico AG, Comoli P, Agustoni F. Phase I Clinical Trial on Pleural Mesothelioma Using Neoadjuvant Local Administration of Paclitaxel-Loaded Mesenchymal Stromal Cells (PACLIMES Trial): Study Rationale and Design. Cancers (Basel) 2024; 16:3391. [PMID: 39410011 PMCID: PMC11475395 DOI: 10.3390/cancers16193391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background and rationale. Pleural mesothelioma (PM) is a rare and aggressive neoplasm that originates from the pleural mesothelium and whose onset is mainly linked to exposure to asbestos, which cannot be attacked with truly effective therapies with consequent poor prognosis. The rationale of this study is based on the use of mesenchymal stromal cells (MSCs) as a vehicle for chemotherapy drugs to be injected directly into the pathological site, such as the pleural cavity. Study design. The study involves the use of a conventional chemotherapeutic drug, Paclitaxel (PTX), which is widely used in the treatment of different types of solid tumors, including PM, although some limitations are related to pharmacokinetic aspects. The use of PTX-loaded MSCs to treat PM should provide several potential advantages over the systemically administered drug as reduced toxicity and increased concentration of active drug in the tumor-surrounding context. The PACLIMES trial explores the safety and toxicity of the local administration of Paclimes in chemonaive patients, candidates for pleurectomy. The secondary objective is to find the effective Paclimes dose for subsequent phase II studies and to observe and record the antitumor activity. Future direction. The experimental pre-clinical background and rationale are discussed as well.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Medical Oncology Unit, Oncology and Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Galli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Medical Oncology Unit, Oncology and Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Radiology Unit-Diagnostic Imaging I, Department of Diagnostic Medicine, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulio Melloni
- Unit of Thoracic Surgery, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gioacchino D’Ambrosio
- Pathology Unit, Department of Diagnostical Services and Imaging, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Catherine Klersy
- Biostatistics and Clinical Trial Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, 27100 Pavia, Italy;
| | - Amelia Grosso
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (F.P.); (G.A.); (A.P.)
| | - Stefano Tomaselli
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Laura Saracino
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Giulio Alessandri
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (F.P.); (G.A.); (A.P.)
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (F.P.); (G.A.); (A.P.)
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Phase 1 Clinical Trial Unit and Experimental Therapy, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.G.); (S.T.); (L.S.)
| | - Patrizia Comoli
- Cell Factory, Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Francesco Agustoni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy; (P.P.); (G.G.); (A.G.C.); (F.A.)
- Medical Oncology Unit, Oncology and Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
3
|
Coccè V, Missaglia S, Martegani E, Tavian D, Doneda L, Manfredi B, Alessandri G, Corradini C, Giannì A, Ciusani E, Paino F, Pessina A. Early Adipogenesis and Upregulation of UCP1 in Mesenchymal Stromal Cells Stimulated by Devitalized Microfragmented Fat (MiFAT). J Lipids 2024; 2024:1318186. [PMID: 39297160 PMCID: PMC11410402 DOI: 10.1155/2024/1318186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
Adipose tissue is mainly composed by adipocytes. Moreover, mesenchymal stromal/stem cells (MSCs), macrophages, endothelial cells, and extracellular matrix components are present. The variety of molecules as cytokines and growth factors of its structure very rich in blood vessel makes it also similar to a true endocrine organ that however needs still to be fully investigated. In our study, we used human lipoaspirate to obtain mechanically microfragmented fat (MiFAT) which was washed and then devitalized by freezing-thawing cycles. In our experiments, thawed MiFAT was used to stimulate cultures of MSCs from two different sources (adipose tissue and gingiva papilla) in comparison with a traditional stimulation in vitro obtained by culturing MSCs with adipogenic medium. MSCs stimulated with MiFAT showed a very early production of lipid droplets, after only 3 days, that correlated with an increased expression of adipokines. Furthermore, a significant upregulation of PPAR gamma 1 alpha coactivator (PPARGC1A) was observed with an overexpression of uncoupling protein 1 (UCP1) that suggest a pattern of differentiation compatible with the beige-brown fat.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology CRIBENS Università Cattolica del Sacro Cuore, Milan, Italy
- Department of Psychology Università Cattolica del Sacro Cuore, Milan, Italy
| | - Eleonora Martegani
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology CRIBENS Università Cattolica del Sacro Cuore, Milan, Italy
- Department of Psychology Università Cattolica del Sacro Cuore, Milan, Italy
| | - Luisa Doneda
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Barbara Manfredi
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Costantino Corradini
- Department of Biomedical Surgical and Dental Sciences Sports Trauma Researches Center University of Milan c/o 1st Division of Orthopedics and Traumatology Orthopedic Center Pini CTO-ASST Gaetano Pini, Milan, Italy
| | - Aldo Giannì
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
- Maxillo-Facial and Dental Unit Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico 20122, Milan, Italy
| | - Emilio Ciusani
- Department of Diagnostics and Technology Fondazione IRCCS Istituto Neurologico "C.Besta", Milano, Italy
| | - Francesca Paino
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| | - Augusto Pessina
- CRC StaMeTec Department of Biomedical Surgical and Dental Sciences University of Milan 20122, Milan, Italy
| |
Collapse
|
4
|
Ferrero I, Piccinini F, Marrazzo P, Monti M, Pipino C, Banche Niclot ASG, Proto CF, Ragni E, Hass R, Stella GM, Berni P, Ivanovska A, Mareschi K. State of the Art and New Trends from the Second International StemNet Meeting. Int J Mol Sci 2024; 25:2221. [PMID: 38396899 PMCID: PMC10889812 DOI: 10.3390/ijms25042221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The Second International StemNet (Federation of Stem Cell Research Associations) meeting took place on 18-20 October 2023 in Brescia (Italy), with the support of the University of Brescia and the Zooprophylactic Institute of Lombardy and Emilia Romagna. The program of the meeting was articulated in nine sections: (1) Biomedical Communication in Italy: Critical Aspects; (2) StemNet Next Generation Session; (3) Cell-Free Therapies; (4) Tips and Tricks of Research Valorisation; (5) Stem Cells and Cancer; (6) Stem Cells in Veterinary Applications; (7) Stem Cells in Clinical Applications; (8) Organoids and 3D Systems; (9) induced pluripotent stem cells (iPCS) and Gene Therapy. National and International speakers presented their scientific works, inspiring debates and discussions among the attendees. The participation in the meeting was high, especially because of the young researchers who animated all the sessions and the rich poster session.
Collapse
Affiliation(s)
- Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Childrens’ Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (I.F.); (C.F.P.)
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘‘Dino Amadori”, 47014 Meldola, Italy; (F.P.); (M.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Manuela Monti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘‘Dino Amadori”, 47014 Meldola, Italy; (F.P.); (M.M.)
| | - Caterina Pipino
- StemTeCh Group, Center for Advanced Studies and Technology-CAST, Department of Medical, Oral and Biotechnological Sciences, University G. D’Annunzio Chieti-Pescara, 66100 Chieti, Italy;
| | | | - Camilla Francesca Proto
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Childrens’ Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (I.F.); (C.F.P.)
| | - Enrico Ragni
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20157 Milano, Italy;
| | - Ralf Hass
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27000 Pavia, Italy;
- Unit of Respiratory Diseases, Cardiothoracic and Vascular Department, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Priscilla Berni
- Department of Veterinary Sciences, University of Parma, 43121 Parma, Italy;
| | - Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), University of Galway, H91 TK33 Galway, Ireland;
| | - Katia Mareschi
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Childrens’ Hospital, City of Health and Science of Turin, 10126 Turin, Italy; (I.F.); (C.F.P.)
- Department of Public Health and Paediatrics, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
5
|
Bona BL, Lagarrigue P, Chirizzi C, Espinoza MIM, Pipino C, Metrangolo P, Cellesi F, Baldelli Bombelli F. Design of fluorinated stealth poly(ε-caprolactone) nanocarriers. Colloids Surf B Biointerfaces 2024; 234:113730. [PMID: 38176337 DOI: 10.1016/j.colsurfb.2023.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
The covalent functionalization of polymers with fluorinated moieties represents a promising strategy for the development of multimodal systems. Moreover, polymer fluorination often endows the resulting nanocarriers with improved colloidal stability in the biological environment. In this work, we developed fluorinated pegylated (PEG) biodegradable poly(ε-caprolactone) (PCL) drug nanocarriers showing both high colloidal stability and stealth properties, as well as being (19F)-Nuclear Magnetic Resonance (NMR) detectable. The optimized nanocarriers were obtained mixing a PEG-PCL block copolymer with a nonafluoro-functionalized PCL polymer. The role of PEGylation and fluorination on self-assembly and colloidal behavior of the obtained nanoparticles (NPs) was investigated, as well as their respective role on stealth properties and colloidal stability. To prove the feasibility of the developed NPs as potential 19F NMR detectable drug delivery systems, a hydrophobic drug was successfully encapsulated, and the maintenance of the relevant 19F NMR properties evaluated. Drug-loaded fluorinated NPs still retained a sharp and intense 19F NMR signal and good relaxivity parameters (i.e., T1 and T2 relaxation times) in water, which were not impaired by drug encapsulation.
Collapse
Affiliation(s)
- Beatrice Lucia Bona
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Prescillia Lagarrigue
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy; Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Cristina Chirizzi
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Maria Isabel Martinez Espinoza
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Christian Pipino
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Pierangelo Metrangolo
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Francesco Cellesi
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy; Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy
| | - Francesca Baldelli Bombelli
- SupraBioNanoLab, Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano 20131, Italy.
| |
Collapse
|
6
|
Banche Niclot AGS, Marini E, Ferrero I, Barbero F, Rosso E, Fenoglio I, Barge A, Pessina A, Coccè V, Paino F, Mareschi K, Fagioli F. A New Paclitaxel Formulation Based on Secretome Isolated from Mesenchymal Stem Cells Shows a Significant Cytotoxic Effect on Osteosarcoma Cell Lines. Pharmaceutics 2023; 15:2340. [PMID: 37765308 PMCID: PMC10537652 DOI: 10.3390/pharmaceutics15092340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) represents a rare cancer with an unfavorable prognosis that needs innovative treatment. The aim was to isolate a secretome from mesenchymal stem cells (MSCs) that are treated with paclitaxel (PTX)-containing microvesicles as a drug delivery system and analyze its cytotoxic effects on OS cell lines (SJSA, MG63, and HOS). METHODS Three batches of secretome (SECR-1, SECR-2, and SECR-3) were produced from three bone marrow (BM) MSCs samples treated for 24 h with 15 µg/mL of PTX or with a standard medium. The viability of the OS cell lines after 5 days of exposure to SECR-1-2-3 (pure and diluted to 1:2 and 1:4) was analyzed with an MTT assay. The same SECR batches were analyzed with high-performance liquid chromatography (HPLC) and with a nanoparticle tracking assay (NTA). RESULTS A statistically significant decrease in the viability of all OS cell lines was observed after treatment with SECR-PTX 1-2-3 in a dose-response manner. The NTA analyses showed the presence of nanoparticles (NPs) with a mean size comparable to that of extracellular vesicles (EVs). The HPLC analyses detected the presence of PTX in minimal doses in all SECR batches. CONCLUSIONS This proof-of-concept study showed that the conditioned medium isolated from MSCs loaded with PTX had a strong cytotoxic effect on OS cell lines, due to the presence of EV and PTX.
Collapse
Affiliation(s)
| | - Elena Marini
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (A.G.S.B.N.); (E.M.); (F.F.)
| | - Ivana Ferrero
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy;
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (F.B.); (I.F.)
| | - Elena Rosso
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (E.R.); (A.B.)
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (F.B.); (I.F.)
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (E.R.); (A.B.)
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (A.P.); (V.C.); (F.P.)
| | - Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (A.P.); (V.C.); (F.P.)
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (A.P.); (V.C.); (F.P.)
| | - Katia Mareschi
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (A.G.S.B.N.); (E.M.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy;
| | - Franca Fagioli
- Department of Public Health and Paediatrics, The University of Turin, Piazza Polonia 94, 10126 Torino, Italy; (A.G.S.B.N.); (E.M.); (F.F.)
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Division, Regina Margherita Children’s Hospital, City of Health and Science of Turin, 10126 Torino, Italy;
| |
Collapse
|
7
|
Coccè V, Bonelli M, La Monica S, Alfieri R, Doneda L, Martegani E, Alessandri G, Annamaria Lagrasta C, Giannì A, Sordi V, Petrella F, Roncoroni L, Paino F, Pessina A. Mesenchymal stromal cells loaded with Paclitaxel (PacliMES) a potential new therapeutic approach on mesothelioma. Biochem Pharmacol 2023:115678. [PMID: 37399948 DOI: 10.1016/j.bcp.2023.115678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Malignant pleural mesothelioma is an asbestos-related tumor originating in mesothelial cells of the pleura that poorly responds to chemotherapeutic approaches. Adult mesenchymal stromal cells derived either from bone marrow or from adipose tissue may be considered a good model for cell-based therapy, a treatment which has experienced significant interest in recent years. The present study confirms that Paclitaxel is effective on mesothelioma cell proliferation in 2D and 3D in vitro cultures, and that 80,000 mesenchymal stromal cells loaded with Paclitaxel inhibit tumor growth at a higher extent than Paclitaxel alone. An in vivo approach to treat in situ mesothelioma xenografts using a minimal amount of 106 mesenchymal stromal cells loaded with Paclitaxel showed the same efficacy of a systemic administration of 10 mg/kg of Paclitaxel. These data strongly support drug delivery system by mesenchymal stromal cells as a useful approach against many solid tumors. We look with interest at the favourable opinion recently expressed by the Italian Drug Agency on the procedure for the preparation of mesenchymal stromal cells loaded with Paclitaxel in large-scale bioreactor systems and their storage until clinical use. This new Advanced Medicinal Therapy Product, already approved for a Phase I clinical trial on mesothelioma patients, could pave the way for mesenchymal stromal cells use as drug delivery system on other solid tumors for adjuvant therapy associated with surgery and radiotherapy.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Luisa Doneda
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Eleonora Martegani
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | | | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; Maxillo-Facial and Dental Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Hospital, 20132, Milan, Italy
| | - Francesco Petrella
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; Department of Thoracic Surgery, IRCCS European Institute of Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Leda Roncoroni
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
8
|
Cordani N, Lisini D, Coccè V, Paglia G, Meanti R, Cerrito MG, Tettamanti P, Bonaffini L, Paino F, Alessandri G, Marcianti A, Giannì A, Villa C, Mauri M, Mologni L, Torsello A, Pessina A, Cazzaniga ME. Conditioned Medium of Mesenchymal Stromal Cells Loaded with Paclitaxel Is Effective in Preclinical Models of Triple-Negative Breast Cancer (TNBC). Int J Mol Sci 2023; 24:ijms24065864. [PMID: 36982938 PMCID: PMC10058623 DOI: 10.3390/ijms24065864] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a very aggressive disease even in its early stages and is characterized by a severe prognosis. Neoadjuvant chemotherapy is one of the milestones of treatment, and paclitaxel (PTX) is among the most active drugs used in this setting. However, despite its efficacy, peripheral neuropathy occurs in approximately 20-25% of cases and represents the dose-limiting toxicity of this drug. New deliverable strategies to ameliorate drug delivery and reduce side effects are keenly awaited to improve patients' outcomes. Mesenchymal stromal cells (MSCs) have recently been demonstrated as promising drug delivery vectors for cancer treatment. The aim of the present preclinical study is to explore the possibility of a cell therapy approach based on the use of MSCs loaded with PTX to treat TNBC-affected patients. For this purpose, we in vitro evaluated the viability, migration and colony formation of two TNBC cell lines, namely, MDA-MB-231 and BT549, treated with MSC-PTX conditioned medium (MSC-CM PTX) in comparison with both CM of MSCs not loaded with PTX (CTRL) and free PTX. We observed stronger inhibitory effects on survival, migration and tumorigenicity for MSC-CM PTX than for CTRL and free PTX in TNBC cell lines. Further studies will provide more information about activity and potentially open the possibility of using this new drug delivery vector in the context of a clinical study.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit-UPTC, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giuseppe Paglia
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Ramona Meanti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | | | - Pietro Tettamanti
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Luca Bonaffini
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Giulio Alessandri
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Angela Marcianti
- Cell Therapy Production Unit-UPTC, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Maxillo-Facial and Dental Unit, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Mario Mauri
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Luca Mologni
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Antonio Torsello
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Marina Elena Cazzaniga
- School of Medicine and Surgery, Milano-Bicocca University, 20900 Monza, Italy
- Phase 1 Research Centre, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| |
Collapse
|
9
|
Shekari F, Abyadeh M, Meyfour A, Mirzaei M, Chitranshi N, Gupta V, Graham SL, Salekdeh GH. Extracellular Vesicles as reconfigurable therapeutics for eye diseases: Promises and hurdles. Prog Neurobiol 2023; 225:102437. [PMID: 36931589 DOI: 10.1016/j.pneurobio.2023.102437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
A large number of people worldwide suffer from visual impairment. However, most available therapies rely on impeding the development of a particular eye disorder. Therefore, there is an increasing demand for effective alternative treatments, specifically regenerative therapies. Extracellular vesicles, including exosomes, ectosomes, or microvesicles, are released by cells and play a potential role in regeneration. Following an introduction to EV biogenesis and isolation methods, this integrative review provides an overview of our current knowledge about EVs as a communication paradigm in the eye. Then, we focused on the therapeutic applications of EVs derived from conditioned medium, biological fluid, or tissue and highlighted some recent developments in strategies to boost the innate therapeutic potential of EVs by loading various kinds of drugs or being engineered at the level of producing cells or EVs. Challenges faced in the development of safe and effective translation of EV-based therapy into clinical settings for eye diseases are also discussed to pave the road toward reaching feasible regenerative therapies required for eye-related complications.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | | |
Collapse
|
10
|
Karami Fath M, Moayedi Banan Z, Barati R, Mohammadrezakhani O, Ghaderi A, Hatami A, Ghiabi S, Zeidi N, Asgari K, Payandeh Z, Barati G. Recent advancements to engineer mesenchymal stem cells and their extracellular vesicles for targeting and destroying tumors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:1-16. [PMID: 36781149 DOI: 10.1016/j.pbiomolbio.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Mesenchymal stem cells (MSCs) have the ability to migrate into tumor sites and release growth factors to modulate the tumor microenvironment. MSC therapy have shown a dual role in cancers, promoting or inhibiting. However, MSCs could be used as a carrier of anticancer agents for targeted tumor therapy. Recent technical improvements also allow engineering MSCs to improve tumor-targeting properties, protect anticancer agents, and decrease the cytotoxicity of drugs. While some of MSC functions are mediated through their secretome, MSCs-derived extracellular vesicles (EVs) are also proposed as a possible viechle for cancer therapy. EVs allow efficient loading of anticancer agents and have an intrinsic ability to target tumor cells, making them suitable for targeted therapy of tumors. In addition, the specificity and selectivity of EVs to the tumor sites could be enhanced by surface modification. In this review, we addressed the current approaches used for engineering MSCs and EVs to effectively target tumor sites and deliver anticancer agents.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Moayedi Banan
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Barati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadrezakhani
- Faculty of Pharmacy, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aliasghar Ghaderi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hatami
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Zeidi
- Division of Pharmaceutical Science, Long Island University, Brooklyn, NY, USA
| | - Katayoon Asgari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
11
|
Jakl V, Ehmele M, Winkelmann M, Ehrenberg S, Eiseler T, Friemert B, Rojewski MT, Schrezenmeier H. A novel approach for large-scale manufacturing of small extracellular vesicles from bone marrow-derived mesenchymal stromal cells using a hollow fiber bioreactor. Front Bioeng Biotechnol 2023; 11:1107055. [PMID: 36761296 PMCID: PMC9904364 DOI: 10.3389/fbioe.2023.1107055] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising therapeutic candidates in a variety of diseases due to having immunomodulatory and pro-regenerative properties. In recent years, MSC-derived small extracellular vesicles (sEVs) have attracted increasing interest as a possible alternative to conventional cell therapy. However, translational processes of sEVs for clinical applications are still impeded by inconsistencies regarding isolation procedures and culture conditions. We systematically compared different methods for sEV isolation from conditioned media of ex vivo expanded bone marrow-derived MSCs and demonstrated considerable variability of quantity, purity, and characteristics of sEV preparations obtained by these methods. The combination of cross flow filtration with ultracentrifugation for sEV isolation resulted in sEVs with similar properties as compared to isolation by differential centrifugation combined with ultracentrifugation, the latter is still considered as gold standard for sEV isolation. In contrast, sEV isolation by a combination of precipitation with polyethylene glycol and ultracentrifugation as well as cross flow filtration and size exclusion chromatography resulted in sEVs with different characteristics, as shown by surface antigen expression patterns. The MSC culture requires a growth-promoting supplement, such as platelet lysate, which contains sEVs itself. We demonstrated that MSC culture with EV-depleted platelet lysate does not alter MSC characteristics, and conditioned media of such MSC cultures provide sEV preparations enriched for MSC-derived sEVs. The results from the systematic stepwise evaluation of various aspects were combined with culture of MSCs in a hollow fiber bioreactor. This resulted in a strategy using cross flow filtration with subsequent ultracentrifugation for sEV isolation. In conclusion, this workflow provides a semi-automated, efficient, large-scale-applicable, and good manufacturing practice (GMP)-grade approach for the generation of sEVs for clinical use. The use of EV-depleted platelet lysate is an option to further increase the purity of MSC-derived sEVs.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Melanie Ehmele
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, Ulm, Germany
| | - Martina Winkelmann
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Simon Ehrenberg
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Tim Eiseler
- Clinic of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, Ulm, Germany
| | - Markus Thomas Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
12
|
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022; 12:2634-2648. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Drug delivery systems aim at improving drug transport efficiency and therapeutic efficacy by rational design, and current research on conventional delivery systems brings new developments for disease treatment. Recently, studies on cell-based drug delivery systems are rapidly emerging, which shows great advantages in comparison to conventional drug delivery system. The system uses cells as carriers to delivery conventional drugs or nanomedicines and shows good biocompatibility and enhanced targeting efficiency, beneficial from self component and its physiological function. The construction methodology of cell-based carrier determines the effect on the physiological functions of transporting cell and affects its clinical application. There are different strategies to prepare cell-based carrier, such as direct internalization or surface conjugation of drugs or drug loaded materials. Thus, it is necessary to fully understand the advantages and disadvantages of different strategies for constructing cell-based carrier and then to seek the appropriate construction methodology for achieving better therapeutic results based on disease characterization. We here summarize the application of different types of cell-based carriers reported in recent years and further discuss their applications in disease therapy and the dilemmas faced in clinical translation. We hope that this summary can accelerate the process of clinical translation by promoting the technology development of cell-based carrier.
Collapse
Affiliation(s)
- Tonggong Liu
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.,Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
| | - Huanwen Tang
- Department of Preventive Medicine, School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
13
|
Ekpo MD, Xie J, Liu X, Onuku R, Boafo GF, Tan S. Incorporating Cryopreservation Evaluations Into the Design of Cell-Based Drug Delivery Systems: An Opinion Paper. Front Immunol 2022; 13:967731. [PMID: 35911753 PMCID: PMC9334677 DOI: 10.3389/fimmu.2022.967731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- *Correspondence: Songwen Tan,
| |
Collapse
|
14
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
15
|
Capelli C, Frigerio S, Lisini D, Nava S, Gaipa G, Belotti D, Cabiati B, Budelli S, Lazzari L, Bagnarino J, Tanzi M, Comoli P, Perico N, Introna M, Golay J. A comprehensive report of long-term stability data for a range ATMPs: A need to develop guidelines for safe and harmonized stability studies. Cytotherapy 2022; 24:544-556. [PMID: 35177338 DOI: 10.1016/j.jcyt.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Advanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area. METHODS We have collected and analyzed the results of stability studies on 19 different cell-based experimental ATMPs, produced by five authorized cell factories forming the Lombardy "Plagencell network" for use in 36 approved phase I/II clinical trials; most were cryopreserved and stored in liquid nitrogen vapors for 1 to 13 years. RESULTS The cell attributes collected in stability studies included cell viability, immunophenotype and potency assays, in particular immunosuppression, cytotoxicity, cytokine release and proliferation/differentiation capacity. Microbiological attributes including sterility, endotoxin levels and mycoplasma contamination were also analyzed. All drug products (DPs), cryopreserved in various excipients containing 10% DMSO and in different primary containers, were very stable long term at <-150°C and did not show any tendency for diminished viability or efficacy for up to 13.5 years. CONCLUSIONS Our data indicate that new guidelines for stability studies, specific for ATMPs and based on risk analyses, should be drafted to harmonize practices, significantly reduce the costs of stability studies without diminishing safety. Some specific suggestions are presented in the discussion.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale di Bergamo, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Daniela Belotti
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Benedetta Cabiati
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Silvia Budelli
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine - Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jessica Bagnarino
- UOSD Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matteo Tanzi
- UOSD Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- UOSD Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Norberto Perico
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Martino Introna
- Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Josée Golay
- Center of Cellular Therapy "G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale di Bergamo, Bergamo, Italy
| |
Collapse
|
16
|
Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice. Cancers (Basel) 2021; 13:cancers13215505. [PMID: 34771667 PMCID: PMC8583409 DOI: 10.3390/cancers13215505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is poorly beneficiated by intravenous chemotherapy due to inadequate availability of drugs at the tumor site. We previously demonstrated that human micro-fragmented adipose tissue (MFAT) and its devitalized counterpart (DMFAT) could be effective natural scaffolds to deliver Paclitaxel (PTX) to tumors in both in vitro and in vivo tests, affecting cancer growth relapse. Here we tested the efficacy of DMFAT-PTX in a well-established HCC in nude mice. MFAT-PTX and DMFAT-PTX preparations were tested for anti-cancer activity in 2D and 3D assays using Hep-3B tumor cells. The efficacy of DMFAT-PTX was evaluated after a single-shot subcutaneous injection near a Hep-3B growing tumor by assessing tumor volumes, apoptosis rate, and drug pharmacokinetics in an in vivo model. Potent antiproliferative activity was seen in both in vitro 2D and 3D tests. Mice treated with DMFAT-PTX (10 mg/kg) produced potent Hep-3B growth inhibition with 33% complete tumor regressions. All treated animals experienced tumor ulceration at the site of DMFAT-PTX injection, which healed spontaneously. Lowering the drug concentration (5 mg/kg) prevented the formation of ulcers, maintaining statistically significant efficacy. Histology revealed a higher number of apoptotic cancer cells intratumorally, suggesting prolonged presence of PTX that was confirmed by the pharmacokinetic analysis. DMFAT may be a potent and valid new tool for local chemotherapy of HCC in an advanced stage of progression, also suggesting potential effectiveness in other human primary inoperable cancers.
Collapse
|
17
|
Fu H, Wu Y, Yang X, Huang S, Yu F, Deng H, Zhang S, Xiang Q. Stem cell and its derivatives as drug delivery vehicles: an effective new strategy of drug delivery system. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1967202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hongwei Fu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yinan Wu
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xiaobin Yang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiyi Huang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Fenglin Yu
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Hong Deng
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shu Zhang
- Institute of Materia Medica and Guangdong Provincial Key Laboratory of New Pharmaceutical Dosage Form, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Engineering & Technology Research Centre for Topical Precise Drug Delivery System School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University & Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
18
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
19
|
Inhibition of Human Malignant Pleural Mesothelioma Growth by Mesenchymal Stromal Cells. Cells 2021; 10:cells10061427. [PMID: 34201002 PMCID: PMC8227879 DOI: 10.3390/cells10061427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM. METHODS We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines. After large-scale production of MSCs in a bioreactor, their efficacy was also evaluated on a human MPM xenograft in mice. RESULTS MSCs, their lysate and secretome inhibited MPM cell proliferation in vitro with S or G0/G1 arrest of the cell cycle, respectively. MSC lysate induced cell death by apoptosis. The efficacy of MSC was confirmed in vivo by a significant inhibition of tumor growth, similar to that produced by systemic administration of paclitaxel. Interestingly, no tumor progression was observed after the last MSC treatment, while tumors started to grow again after stopping chemotherapeutic treatment. CONCLUSIONS These data demonstrated for the first time that MSCs, both through paracrine and cell-to-cell interaction mechanisms, induced a significant inhibition of human mesothelioma growth. Since the prognosis for MPM patients is poor and the options of care are limited to chemotherapy, MSCs could provide a potential new therapeutic approach for this malignancy.
Collapse
|
20
|
Lanao JM, Gutiérrez-Millán C, Colino CI. Cell-Based Drug Delivery Platforms. Pharmaceutics 2020; 13:pharmaceutics13010002. [PMID: 33374912 PMCID: PMC7821918 DOI: 10.3390/pharmaceutics13010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- José M. Lanao
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Carmen Gutiérrez-Millán
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence:
| | - Clara I. Colino
- Area of Pharmacy and Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Salamanca, 37007 Salamanca, Spain; (J.M.L.); (C.I.C.)
- The Institute for Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|