1
|
He X, Qin Y, Liu H, Cheng K, Yang W, Qin X. Dual-Responsive "Egg-Box" Shaped Microgel Beads Based on W 1/O/W 2 Double Emulsions for Colon-Targeted Delivery of Synbiotics. Foods 2024; 13:2163. [PMID: 39063247 PMCID: PMC11275271 DOI: 10.3390/foods13142163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, for enhancing the resistance of probiotics to environmental factors, we designed a microgel beads delivery system loaded with synbiotics. Multiple droplets of W1/O/W2 emulsions stabilized with zein-apple pectin hybrid nanoparticles (ZAHPs) acted as the inner "egg," whereas a three-dimensional network of poly-L-lysine (PLL)-alginate-CaCl2 (Ca) crosslinked gel layers served as the outermost "box." ZAHPs with a mass ratio of 2:1 zein-to-apple pectin showed excellent wettability (three-phase contact angle = 89.88°). The results of the ζ-potentials and Fourier transform infrared spectroscopy demonstrate that electrostatic interaction forces and hydrogen bonding were the main forces involved in the formation of ZAHPs. On this basis, we prepared W1/O/W2 emulsions with other preparation parameters and observed their microstructures by optical microscopy and confocal laser scanning microscope. The multi-chambered structures of W1/O/W2 emulsions were successfully visualized. Finally, the W1/O/W2 emulsions were coated with PLL-alginate-Ca using the solution extrusion method. The results of the in vitro colonic digestion stage reveal that the survival rate of probiotics in the microgel beads was about 75.11%, which was significantly higher than that of the free. Moreover, probiotics encapsulated in microgel beads also showed positive storage stability. Apple pectin would serve as both an emulsifier and a prebiotic. Thus, the results indicate that the "egg-box" shaped microgel beads, designed on the basis of pH-sensitive and enzyme-triggered mechanisms, can enhance the efficiency of probiotics translocation in the digestive tract and mediate spatiotemporal controlled release.
Collapse
Affiliation(s)
- Xian He
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; (X.H.); (Y.Q.); (H.L.); (K.C.); (W.Y.)
| | - Yunyun Qin
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; (X.H.); (Y.Q.); (H.L.); (K.C.); (W.Y.)
| | - Haoyue Liu
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; (X.H.); (Y.Q.); (H.L.); (K.C.); (W.Y.)
| | - Kang Cheng
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; (X.H.); (Y.Q.); (H.L.); (K.C.); (W.Y.)
- First Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; (X.H.); (Y.Q.); (H.L.); (K.C.); (W.Y.)
| | - Xinsheng Qin
- Department of Nutrition and Food Hygiene, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; (X.H.); (Y.Q.); (H.L.); (K.C.); (W.Y.)
| |
Collapse
|
2
|
Peñalva R, Martínez-López AL, Gamazo C, Gonzalez-Navarro CJ, González-Ferrero C, Virto-Resano R, Brotons-Canto A, Vitas AI, Collantes M, Peñuelas I, Irache JM. Encapsulation of Lactobacillus plantarum in casein-chitosan microparticles facilitates the arrival to the colon and develops an immunomodulatory effect. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Lee J, Oshi MA, Kwak D, Kim H, Kim J, Hlaing SP, Saparbayeva A, Hwang S, Jung Y, Yoo JW. On-demand reconstitutable hyaluronic acid-doped azathioprine microcrystals effectively ameliorate ulcerative colitis via selective accumulation in inflamed tissues. Biomater Sci 2022; 10:6500-6509. [PMID: 36178247 DOI: 10.1039/d2bm01137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although CD44-targeted delivery of pure drug microcrystals of azathioprine (AZA) could be a desirable approach to treat ulcerative colitis (UC), premature drug release and systemic absorption before reaching the colitis region remain a major obstacle. In this study, to overcome these limitations, we developed on-demand reconstitutable HA-doped AZA microcrystals (EFS/HA-AZAs) via incorporating hyaluronic acid (HA)-doped AZA microcrystals (HA-AZAs) into a Eudragit FS (EFS) microcomposite. Since EFS acts as a protective layer, the premature release of AZA in the simulated conditions of the stomach and small intestine was substantially reduced, while HA-AZAs were successfully reconstituted from the EFS/HA-AZAs in the colonic environment, resulting from the pH-triggered dissolution of EFS. After complete reconstitution of HA-AZAs in the colon, HA-AZAs selectively accumulated in the inflamed region via the HA-CD44 interaction. Owing to successful colitis-targeted delivery, EFS/HA-AZAs showed potent anti-inflammatory effects in a dextran sulfate sodium-induced murine colitis model within 7 days without systemic toxicity. These results suggest that EFS/HA-AZAs could be a promising drug delivery system for UC treatment.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Murtada A Oshi
- College of Pharmacy, Omdurman Islamic University, PO. Box 167, Omdurman, Sudan
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Aruzhan Saparbayeva
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Seonghwan Hwang
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
4
|
Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. FERMENTATION 2022. [DOI: 10.3390/fermentation8030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomaterials engineering and biotechnology have advanced significantly towards probiotic encapsulation with encouraging results in assuring sufficient bioactivity. However, some major challenges remain to be addressed, and these include maintaining stability in different compartments of the gastrointestinal tract (GIT), favoring adhesion only at the site of action, and increasing residence times. An alternative to addressing such challenges is to manufacture encapsulates with stimuli-responsive polymers, such that controlled release is achievable by incorporating moieties that respond to chemical and physical stimuli present along the GIT. This review highlights, therefore, such emerging delivery matrices going from a comprehensive description of addressable stimuli in each GIT compartment to novel synthesis and functionalization techniques to currently employed materials used for probiotic’s encapsulation and achieving multi-modal delivery and multi-stimuli responses. Next, we explored the routes for encapsulates design to enhance their performance in terms of degradation kinetics, adsorption, and mucus and gut microbiome interactions. Finally, we present the clinical perspectives of implementing novel probiotics and the challenges to assure scalability and cost-effectiveness, prerequisites for an eventual niche market penetration.
Collapse
|
5
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
6
|
Wagashi cheese: Probiotic bacteria incorporation and significance on microbiological, physicochemical, functional and sensory properties during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ahluwalia MK. Nutrigenetics and nutrigenomics-A personalized approach to nutrition. ADVANCES IN GENETICS 2021; 108:277-340. [PMID: 34844714 DOI: 10.1016/bs.adgen.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prevalence of non-communicable diseases has been on an upward trajectory for some time and this puts an enormous burden on the healthcare expenditure. Lifestyle modifications including dietary interventions hold an immense promise to manage and prevent these diseases. Recent advances in genomic research provide evidence that focussing these efforts on individual variations in abilities to metabolize nutrients (nutrigenetics) and exploring the role of dietary compounds on gene expression (nutrigenomics and nutri-epigenomics) can lead to more meaningful personalized dietary strategies to promote optimal health. This chapter aims to provide examples on these gene-diet interactions at multiple levels to support the need of embedding targeted dietary interventions as a way forward to prevent, avoid and manage diseases.
Collapse
|
8
|
Kim J, Hlaing SP, Lee J, Saparbayeva A, Kim S, Hwang DS, Lee EH, Yoon IS, Yun H, Kim MS, Moon HR, Jung Y, Yoo JW. Exfoliated bentonite/alginate nanocomposite hydrogel enhances intestinal delivery of probiotics by resistance to gastric pH and on-demand disintegration. Carbohydr Polym 2021; 272:118462. [PMID: 34420722 DOI: 10.1016/j.carbpol.2021.118462] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In this study, we developed Lactobacillus rhamnosus GG (LGG)-encapsulating exfoliated bentonite/alginate nanocomposite hydrogels for protecting probiotics by delaying gastric fluid penetration into the nanocomposite and their on-demand release in the intestine. The pore size of the bentonite/alginate nanocomposite hydrogels (BA15) was two-fold smaller than that of alginate hydrogel (BA00). Following gastric pH challenge, the survival of LGG in BA15 decreased by only 1.43 log CFU/g as compared to the 6.25 log CFU/g decrease in alginate (BA00). Further, the internal pH of BA15 decreased more gradually than that of BA00. After oral administration in mice, BA15 maintained shape integrity during gastric passage, followed by appropriate disintegration within the target intestinal area. Additionally, a fecal recovery experiment in mice showed that the viable counts of LGG in BA15 were six-fold higher than those in BA00. The findings suggest the exfoliated bentonite/alginate nanocomposite hydrogel as a promising platform for intestinal delivery of probiotics.
Collapse
Affiliation(s)
- Jihyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | | | - Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Eun Hee Lee
- College of Pharmacy, Korea University, Sejong 30019, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
9
|
Nasiri H, Golestan L, Shahidi SA, Darjani P. Encapsulation of Lactobacillus casei in sodium alginate microcapsules: improvement of the bacterial viability under simulated gastrointestinal conditions using wild sage seed mucilage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01022-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Arévalo-Pérez R, Maderuelo C, Lanao JM. Recent advances in colon drug delivery systems. J Control Release 2020; 327:703-724. [DOI: 10.1016/j.jconrel.2020.09.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
|