1
|
Madrid RRM, Mathews PD, Pramanik S, Mangiarotti A, Fernandes R, Itri R, Dimova R, Mertins O. Hybrid crystalline bioparticles with nanochannels encapsulating acemannan from Aloe vera: Structure and interaction with lipid membranes. J Colloid Interface Sci 2024; 673:373-385. [PMID: 38878372 DOI: 10.1016/j.jcis.2024.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/26/2024]
Abstract
Smart nanocarrier-based bioactive delivery systems are a current focus in nanomedicine for allowing and boosting diverse disease treatments. In this context, the design of hybrid lipid-polymer particles can provide structure-sensitive features for tailored, triggered, and stimuli-responsive devices. In this work, we introduce hybrid cubosomes that have been surface-modified with a complex of chitosan-N-arginine and alginate, making them pH-responsive. We achieved high-efficiency encapsulation of acemannan, a bioactive polysaccharide from Aloe vera, within the nanochannels of the bioparticle crystalline structure and demonstrated its controlled release under pH conditions mimicking the gastric and intestinal environments. Furthermore, an acemannan-induced phase transition from Im3m cubic symmetry to inverse hexagonal HII phase enhances the bioactive delivery by compressing the lattice spacing of the cubosome water nanochannels, facilitating the expulsion of the encapsulated solution. We also explored the bioparticle interaction with membranes of varying curvatures, revealing thermodynamically driven affinity towards high-curvature lipid membranes and inducing morphological transformations in giant unilamellar vesicles. These findings underscore the potential of these structure-responsive, membrane-active smart bioparticles for applications such as pH-triggered drug delivery platforms for the gastrointestinal tract, and as modulators and promoters of cellular internalization.
Collapse
Affiliation(s)
- Rafael R M Madrid
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil
| | - Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil; Institute of Biosciences, Sao Paulo State University, 18618-689 Botucatu, Brazil
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rodrigo Fernandes
- Applied Physics Department, Institute of Physics, University of Sao Paulo, 05508-900 Sao Paulo, Brazil
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of Sao Paulo, 05508-900 Sao Paulo, Brazil
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany.
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
2
|
Stepanova M, Levit M, Egorova T, Nashchekina Y, Sall T, Demyanova E, Guryanov I, Korzhikova-Vlakh E. Poly(2-Deoxy-2-Methacrylamido-D-Glucose)-Based Complex Conjugates of Colistin, Deferoxamine and Vitamin B12: Synthesis and Biological Evaluation. Pharmaceutics 2024; 16:1080. [PMID: 39204425 PMCID: PMC11359296 DOI: 10.3390/pharmaceutics16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Growing resistance to traditional antibiotics poses a global threat to public health. In this regard, modification of known antibiotics, but with limited applications due to side effects, is one of the extremely promising approaches at present. In this study, we proposed the synthesis of novel complex polymeric conjugates of the peptide antibiotic colistin (CT). A biocompatible and water-soluble synthetic glycopolymer, namely, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was used as a polymer carrier. In addition to monoconjugates containing CT linked to PMAG by hydrolyzable and stable bonds, a set of complex conjugates also containing the siderophore deferoxamine (DFOA) and vitamin B12 was developed. The structures of the conjugates were confirmed by 1H NMR and FTIR-spectroscopy, while the compositions of conjugates were determined by UV-Vis spectrophotometry and HPLC analysis. The buffer media with pH 7.4, corresponding to blood or ileum pH, and 5.2, corresponding to the intestinal pH after ingestion or pH in the focus of inflammation, were used to study the release of CT. The resulting conjugates were examined for cytotoxicity and antimicrobial activity. All conjugates showed less cytotoxicity than free colistin. A Caco-2 cell permeability assay was carried out for complex conjugates to simulate the drug absorption in the intestine. In contrast to free CT, which showed very low permeability through the Caco-2 monolayer, the complex polymeric conjugates of vitamin B12 and CT provided significant transport. The antimicrobial activity of the conjugates depended on the conjugate composition. It was found that conjugates containing CT linked to the polymer by a hydrolyzable bond were found to be more active than conjugates with a non-hydrolyzable bond between CT and PMAG. Conjugates containing DFOA complexed with Fe3+ were characterized by enhanced antimicrobial activity against Pseudomonas aeruginosa compared to other conjugates.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Mariia Levit
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Tatiana Egorova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Yulia Nashchekina
- Institute of Cytology of Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | - Tatiana Sall
- Institute of Experimental Medicine, 197022 St. Petersburg, Russia;
| | - Elena Demyanova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| |
Collapse
|
3
|
An Y, Guo X, Yan T, Jia Y, Jiao R, Cai X, Deng B, Bao G, Li Y, Yang W, Wang R, Sun W, Xie J. Enhancing the stability and therapeutic potential of the antimicrobial peptide Feleucin-K3 against Multidrug-Resistant a. Baumannii through rational utilization of a D-amino acid substitution strategy. Biochem Pharmacol 2024; 225:116269. [PMID: 38723723 DOI: 10.1016/j.bcp.2024.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Antimicrobial peptides (AMPs), which have a low probability of developing resistance, are considered the most promising antimicrobial agents for combating antibiotic resistance. Feleucin-K3 is an amphiphilic cationic AMP that exhibits broad-spectrum antimicrobial activity. In our previous research, the first phenylalanine residue was identified as the critical position affecting its biological activity. Here, a series of Feleucin-K3 analogs containing hydrophobic D-amino acids were developed, leveraging the low sensitivity of proteases to unnatural amino acids and the regulatory effect of hydrophobicity on antimicrobial activity. Among them, K-1dF, which replaced the phenylalanine of Feleucin-K3 with its enantiomer (D-phenylalanine), exhibited potent antimicrobial activity with a therapeutic index of 46.97 and MICs between 4 to 8 μg/ml against both sensitive and multidrug-resistant Acinetobacter baumannii. The introduction of D-phenylalanine increased the salt tolerance and serum stability of Feleucin-K3. Moreover, K-1dF displayed a rapid bactericidal effect, a low propensity to develop resistance, and a synergistic effect when combined with antibiotics. More importantly, it exhibited considerable or superior efficacy to imipenem against pneumonia and skin abscess infection. In brief, the K-1dF obtained by simple and effective modification strategy has emerged as a promising candidate antimicrobial agent for tackling multidrug-resistant Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Yingying An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Tiantian Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yue Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Ruoyan Jiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Xinyu Cai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Bochuan Deng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Sathiyaseelan A, Zhang X, Lin J, Wang MH. In situ, synthesis of chitosan fabricated tellurium nanoparticles for improved antimicrobial and anticancer applications. Int J Biol Macromol 2024; 258:128778. [PMID: 38103674 DOI: 10.1016/j.ijbiomac.2023.128778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The emergence of antibiotic resistance has had a severe impact on human health and economic burdens, drawing attention to the development of novel antimicrobial therapies. Polymer-metal composites have shown evidence of therapeutic applications by exerting antimicrobial effects and delivering these antimicrobials with biocompatibility. Therefore, this study prepared and characterized chitosan (CS)-fabricated tellurium nanoparticles (Te NPs) for enhanced antimicrobial, antioxidant, and cytotoxicity applications. The CS-Te NPs were spherical, polydisperse, and distributed within the CS matrix with an average size of 37.48 ± 14.56 nm, as confirmed by TEM analysis. CS-Te NPs exhibited positive zeta potential in neutral (pH 7.0: 7.90 ± 1.86 mV) and acidic environment. XRD analysis confirmed the crystalline nature of CS-Te NPs, and these nanoparticles exhibited good thermal and less porosity. A higher release of Te ions occurred from CS-Te NPs at an acidic pH. Further, CS-Te NPs displayed stronger antibacterial and antibiofilm activity against E. coli and S. enterica. Furthermore, CS-Te NPs exhibited significant free radical scavenging activity against ABTS and DPPH free radicals. Moreover, these nanoparticles demonstrated cytotoxicity against cancerous cells (A549 and PC3 cells) when compared to normal cells (NIH3T3 cells). Therefore, this study suggests that CS-Te NPs could serve as a substantial therapeutic agent.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jianxing Lin
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; College of Bioscience and Biotechnology, Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
5
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
6
|
Cho Y, Kim JH, Choi W, Park DY, Cho BK, Kim YH, Min J. Reassembled Vacuoles for Drug Delivery Carriers Using Yeast Vacuoles for Enhanced Antibacterial Activity. Biomacromolecules 2023; 24:4915-4922. [PMID: 37861681 DOI: 10.1021/acs.biomac.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this study, we aimed to develop an efficient drug delivery system by reassembling vacuoles isolated from Saccharomyces cerevisiae. Initially, we assessed the impact of vacuolar enzymes on the efficacy of the loaded antibiotic polymyxin B (PMB), by conducting antibacterial activity tests using Shigella flexneri and Salmonella enteritidis. The results showed that vacuolar enzymes inhibited the effectiveness of PMB, highlighting the limitations of using natural vacuoles as drug carriers. To overcome this, we proposed a new drug delivery system called reassembled vacuoles (ReV). ReV particles were created by removing vacuolar enzymes and reassembling the vacuolar membrane through extrusion. ReV demonstrated improved structural stability, a more uniform size, and enhanced PMB release compared to natural vacuoles. Encapsulation efficiency tests revealed high loading efficiency for both normal vacuoles (NorV) and ReV, with over 80% efficiency at concentrations up to 600 μg/mL. The antibacterial activity of PMB-loaded ReV showed comparable results to PMB alone, indicating the potential of ReV as a drug delivery system. In conclusion, reassembled vacuoles offer a promising approach for drug delivery, addressing the limitations of natural vacuoles and providing opportunities for targeted and efficient drug release.
Collapse
Affiliation(s)
- Yunyoung Cho
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu Jeonju, Jeonbuk 54896, South Korea
| |
Collapse
|
7
|
Zashikhina N, Gandalipov E, Dzhuzha A, Korzhikov-Vlakh V, Korzhikova-Vlakh E. Dual drug loaded polypeptide delivery systems for cancer therapy. J Microencapsul 2023:1-19. [PMID: 37824702 DOI: 10.1080/02652048.2023.2270064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The present study was aimed to prepare and examine in vitro novel dual-drug loaded delivery systems. Biodegradable nanoparticles based on poly(L-glutamic acid-co-D-phenylalanine) were used as nanocarriers for encapsulation of two drugs from the paclitaxel, irinotecan, and doxorubicin series. The developed delivery systems were characterised with hydrodynamic diameters less than 300 nm (PDI < 0.3). High encapsulation efficiencies (≥75%) were achieved for all single- and dual-drug formulations. The release studies showed faster release at acidic pH, with the release rate decreasing over time. The release patterns of the co-encapsulated forms of substances differed from those of the separately encapsulated drugs, suggesting differences in drug-polymer interactions. The joint action of encapsulated drugs was analysed using the colon cancer cells, both for the dual-drug delivery sytems and a mixture of single-drug formulations. The encapsulated forms of the drug combinations demonstrated comparable efficacy to the free forms, with the encapsulation enhancing solubility of the hydrophobic drug paclitaxel.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - Erik Gandalipov
- International Institute of Solution Chemistry and Advanced Materials Technologies, ITMO University, St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
8
|
Zashikhina N, Gladnev S, Sharoyko V, Korzhikov-Vlakh V, Korzhikova-Vlakh E, Tennikova T. Synthesis and Characterization of Nanoparticle-Based Dexamethasone-Polypeptide Conjugates as Potential Intravitreal Delivery Systems. Int J Mol Sci 2023; 24:ijms24043702. [PMID: 36835114 PMCID: PMC9962198 DOI: 10.3390/ijms24043702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The use of dexamethasone for eye disease treatment is limited by its low solubility, bioavailability, and rapid elimination when applied topically. The covalent conjugation of dexamethasone with polymeric carriers is a promising strategy to overcome existing drawbacks. In this work, amphiphilic polypeptides capable of self-assembly into nanoparticles were proposed as potential delivery systems for intravitreal delivery. The nanoparticles were prepared and characterized using poly(L-glutamic acid-co-D-phenylalanine) and poly(L-lysine-co-D/L-phenylalanine) as well as poly(L-lysine-co-D/L-phenylalanine) covered with heparin. The critical association concentration for the polypeptides obtained was in the 4.2-9.4 μg/mL range. The hydrodynamic size of the formed nanoparticles was between 90 and 210 nm, and they had an index of polydispersity between 0.08 and 0.27 and an absolute zeta-potential value between 20 and 45 mV. The ability of nanoparticles to migrate in the vitreous humor was examined using intact porcine vitreous. Conjugation of DEX with polypeptides was performed by additional succinylation of DEX and activation of carboxyl groups introduced to react with primary amines in polypeptides. The structures of all intermediate and final compounds were verified by 1H NMR spectroscopy. The amount of conjugated DEX can be varied from 6 to 220 µg/mg of polymer. The hydrodynamic diameter of the nanoparticle-based conjugates was increased to 200-370 nm, depending on the polymer sample and drug loading. The release of DEX from the conjugates due to hydrolysis of the ester bond between DEX and the succinyl moiety was studied both in a buffer medium and a vitreous/buffer mixture (50/50, v/v). As expected, the release in the vitreous medium was faster. However, the release rate could be controlled in the range of 96-192 h by varying the polymer composition. In addition, several mathematical models were used to assess the release profiles and figure out how DEX is released.
Collapse
Affiliation(s)
- Natalia Zashikhina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Sergei Gladnev
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Vladimir Sharoyko
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, L’va Tolstogo str. 6-8, St. Petersburg 197022, Russia
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Correspondence:
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| |
Collapse
|
9
|
Dvoretckaia A, Egorova T, Dzhuzha A, Levit M, Sivtsov E, Demyanova E, Korzhikova-Vlakh E. Polymyxin B Conjugates with Bio-Inspired Synthetic Polymers of Different Nature. Int J Mol Sci 2023; 24:ijms24031832. [PMID: 36768160 PMCID: PMC9915011 DOI: 10.3390/ijms24031832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
The emergence and growth of bacterial resistance to antibiotics poses an enormous threat to humanity in the future. In this regard, the discovery of new antibiotics and the improvement of existing ones is a priority task. In this study, we proposed the synthesis of new polymeric conjugates of polymyxin B, which is a clinically approved but limited-use peptide antibiotic. In particular, three carboxylate-bearing polymers and one synthetic glycopolymer were selected for conjugation with polymyxin B (PMX B), namely, poly(α,L-glutamic acid) (PGlu), copolymer of L-glutamic acid and L-phenylalanine (P(Glu-co-Phe)), copolymer of N-vinyl succinamic acid and N-vinylsuccinimide (P(VSAA-co-VSI)), and poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG). Unlike PGlu and PMAG, P(Glu-co-Phe) and P(VSAA-co-VSI) are amphiphilic and form nanoparticles in aqueous media. A number of conjugates with different polymyxin B loading were synthesized and characterized. In addition, the complex conjugates of PGLu or PMAG with polymyxin B and deferoxamine (siderophore) were obtained. A release of PMX B from Schiff base and amide-linked polymer conjugates was studied in model buffer media with pH 7.4 and 5.8. In both cases, a more pronounced release was observed under slightly acidic conditions. The cytotoxicity of free polymers and PMX B as well as their conjugates was examined in human embryonic kidney cells (HEK 293T cell line). All conjugates demonstrated reduced cytotoxicity compared to the free antibiotic. Finally, the antimicrobial efficacy of the conjugates against Pseudomonas aeruginosa was determined and compared. The lowest values of minimum inhibitory concentrations (MIC) were observed for polymyxin B and polymyxin B/deferoxamine conjugated with PMAG. Among the polymers tested, PMAG appears to be the most promising carrier for delivery of PMX B in conjugated form due to the good preservation of the antimicrobial properties of PMX B and the ability of controlled drug release.
Collapse
Affiliation(s)
- Anna Dvoretckaia
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Tatiana Egorova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia
| | - Apollinariia Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
| | - Mariia Levit
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Eugene Sivtsov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Department of Physical Chemistry, Saint-Petersburg State Institute of Technology (Technical University), 190013 St. Petersburg, Russia
| | - Elena Demyanova
- State Research Institute of Highly Pure Biopreparations FMBA of Russia, 197110 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
10
|
Dzhuzha AY, Tarasenko II, Atanase LI, Lavrentieva A, Korzhikova-Vlakh EG. Amphiphilic Polypeptides Obtained by the Post-Polymerization Modification of Poly(Glutamic Acid) and Their Evaluation as Delivery Systems for Hydrophobic Drugs. Int J Mol Sci 2023; 24:ijms24021049. [PMID: 36674566 PMCID: PMC9864831 DOI: 10.3390/ijms24021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Synthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B). Moreover, the developed nanoparticles were suitable for loading hydrophobic cargo. In particular, paclitaxel nanoformulations had a size of 170-330 nm and demonstrated a high cytostatic efficacy against human lung adenocarcinoma (A549). In general, the obtained nanoparticles were comparable in terms of their characteristics and properties to those based on amphiphilic (glyco)polypeptides obtained by copolymerization methods.
Collapse
Affiliation(s)
- Apollinariia Yu. Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | | | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University, 30167 Hannover, Germany
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Dubashynskaya NV, Bokatyi AN, Dobrodumov AV, Kudryavtsev IV, Trulioff AS, Rubinstein AA, Aquino AD, Dubrovskii YA, Knyazeva ES, Demyanova EV, Nashchekina YA, Skorik YA. Succinyl Chitosan-Colistin Conjugates as Promising Drug Delivery Systems. Int J Mol Sci 2022; 24:ijms24010166. [PMID: 36613610 PMCID: PMC9820547 DOI: 10.3390/ijms24010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The growth of microbial multidrug resistance is a problem in modern clinical medicine. Chemical modification of active pharmaceutical ingredients is an attractive strategy to improve their biopharmaceutical properties by increasing bioavailability and reducing drug toxicity. Conjugation of antimicrobial drugs with natural polysaccharides provides high efficiency of these systems due to targeted delivery, controlled drug release and reduced toxicity. This paper reports a two-step synthesis of colistin conjugates (CT) with succinyl chitosan (SucCS); first, we modified chitosan with succinyl anhydride to introduce a carboxyl function into the polymer molecule, which was then used for chemical grafting with amino groups of the peptide antibiotic CT using carbodiimide chemistry. The resulting polymeric delivery systems had a degree of substitution (DS) by CT of 3-8%, with conjugation efficiencies ranging from 54 to 100% and CT contents ranging from 130-318 μg/mg. The size of the obtained particles was 100-200 nm, and the ζ-potential varied from -22 to -28 mV. In vitro release studies at pH 7.4 demonstrated ultra-slow hydrolysis of amide bonds, with a CT release of 0.1-0.5% after 12 h; at pH 5.2, the hydrolysis rate slightly increased; however, it remained extremely low (1.5% of CT was released after 12 h). The antimicrobial activity of the conjugates depended on the DS. At DS 8%, the minimum inhibitory concentration (MIC) of the conjugate was equal to the MIC of native CT (1 µg/mL); at DS of 3 and 5%, the MIC increased 8-fold. In addition, the developed systems reduced CT nephrotoxicity by 20-60%; they also demonstrated the ability to reduce bacterial lipopolysaccharide-induced inflammation in vitro. Thus, these promising CT-SucCS conjugates are prospective for developing safe and effective nanoantibiotics.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Anton N. Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Anatoliy V. Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
| | - Igor V. Kudryavtsev
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Artem A. Rubinstein
- Institute of Experimental Medicine, Akademika Pavlova 12, 197376 St. Petersburg, Russia
| | - Arthur D. Aquino
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia
| | | | - Elena S. Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St Petersburg, Russia
| | - Elena V. Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St Petersburg, Russia
| | - Yuliya A. Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, 194064 St. Petersburg, Russia
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
12
|
Nanomedicines Bearing an Alkylating Cytostatic Drug from the Group of 1,3,5-Triazine Derivatives: Development and Characterization. Pharmaceutics 2022; 14:pharmaceutics14112506. [PMID: 36432699 PMCID: PMC9694467 DOI: 10.3390/pharmaceutics14112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer is still one of the major diseases worldwide. The discovery of new drugs and the improvement of existing ones is one of the areas of priority in the fight against cancer. Dioxadet ([5-[[4,6-bis(aziridin-1-yl)-1,3,5-triazin-2-yl]amino]-2,2-dimethyl-1,3-dioxan-5-yl]methanol) represents one of the promising 1,3,5-triazine derivatives and has cytostatic activity towards ovarian cancer. In this study, we first report the development of dioxadet-bearing nanomedicines based on block-copolymers of poly(ethylene glycol) monomethyl ether (mPEG) and poly(D,L-lactic acid) (PLA)/poly(ε-caprolactone) (PCL) and then conduct an investigation into their characteristics and properties. The preparation of narrow-sized nanoparticles with a hydrodynamic diameter of 100−120 nm was optimized using a nanoprecipitation approach. Thoughtful optimization of the preparation of nanomedicines was carried out through adjustments to the polymer’s molecular weight, the pH of the aqueous medium used for nanoprecipitation, the initial drug amount in respect to the polymer, and polymer concentration in the organic phase. Under optimized conditions, spherical-shaped nanomedicines with a hydrodynamic diameter of up to 230 nm (PDI < 0.2) containing up to 592 ± 22 μg of dioxadet per mg of polymer nanoparticles were prepared. Study of the drug’s release in a model medium revealed the release up to 64% and 46% of the drug after 8 days for mPEG-b-PLA and mPEG-b-PCL, respectively. Deep analysis of the release mechanisms was carried out with the use of a number of mathematical models. The developed nanoparticles were non-toxic towards both normal (CHO-K1) and cancer (A2780 and SK-OV-3) ovarian cells. A cell cycle study revealed lesser toxicity of nanomedicines towards normal cells and increased toxicity towards cancer cells. The IC50 values determined for dioxadet nanoformulations were in the range of 0.47−4.98 μg/mL for cancer cells, which is close to the free drug’s efficacy (2.60−4.14 μg/mL). The highest cytotoxic effect was found for dioxadet loaded to mPEG-b-PCL nanoparticles.
Collapse
|
13
|
Dubashynskaya NV, Bokatyi AN, Gasilova ER, Dobrodumov AV, Dubrovskii YA, Knyazeva ES, Nashchekina YA, Demyanova EV, Skorik YA. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications. Int J Biol Macromol 2022; 215:243-252. [PMID: 35724903 DOI: 10.1016/j.ijbiomac.2022.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 μg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskii 26, St. Petersburg, Petrodvorets, 198504, Russian Federation
| | - Ekaterina R Gasilova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Elena S Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
14
|
Skwarczynski M, Bashiri S, Yuan Y, Ziora ZM, Nabil O, Masuda K, Khongkow M, Rimsueb N, Cabral H, Ruktanonchai U, Blaskovich MAT, Toth I. Antimicrobial Activity Enhancers: Towards Smart Delivery of Antimicrobial Agents. Antibiotics (Basel) 2022; 11:412. [PMID: 35326875 PMCID: PMC8944422 DOI: 10.3390/antibiotics11030412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
The development of effective treatments against infectious diseases is an extensive and ongoing process due to the rapid adaptation of bacteria to antibiotic-based therapies. However, appropriately designed activity enhancers, including antibiotic delivery systems, can increase the effectiveness of current antibiotics, overcoming antimicrobial resistance and decreasing the chance of contributing to further bacterial resistance. The activity/delivery enhancers improve drug absorption, allow targeted antibiotic delivery, improve their tissue and biofilm penetration and reduce side effects. This review provides insights into various antibiotic activity enhancers, including polymer, lipid, and silver-based systems, designed to reduce the adverse effects of antibiotics and improve formulation stability and efficacy against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ye Yuan
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zyta M Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Osama Nabil
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keita Masuda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Natchanon Rimsueb
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang 12120, Pathumthani, Thailand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Iudin D, Vasilieva M, Knyazeva E, Korzhikov-Vlakh V, Demyanova E, Lavrentieva A, Skorik Y, Korzhikova-Vlakh E. Hybrid Nanoparticles and Composite Hydrogel Systems for Delivery of Peptide Antibiotics. Int J Mol Sci 2022; 23:2771. [PMID: 35269910 PMCID: PMC8911036 DOI: 10.3390/ijms23052771] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
The growing number of drug-resistant pathogenic bacteria poses a global threat to human health. For this reason, the search for ways to enhance the antibacterial activity of existing antibiotics is now an urgent medical task. The aim of this study was to develop novel delivery systems for polymyxins to improve their antimicrobial properties against various infections. For this, hybrid core-shell nanoparticles, consisting of silver core and a poly(glutamic acid) shell capable of polymyxin binding, were developed and carefully investigated. Characterization of the hybrid nanoparticles revealed a hydrodynamic diameter of approximately 100 nm and a negative electrokinetic potential. The nanoparticles demonstrated a lack of cytotoxicity, a low uptake by macrophages, and their own antimicrobial activity. Drug loading and loading efficacy were determined for both polymyxin B and E, and the maximal loaded value with an appropriate size of the delivery systems was 450 µg/mg of nanoparticles. Composite materials based on agarose hydrogel were prepared, containing both the loaded hybrid systems and free antibiotics. The features of polymyxin release from the hybrid nanoparticles and the composite materials were studied, and the mechanisms of release were analyzed using different theoretical models. The antibacterial activity against Pseudomonas aeruginosa was evaluated for both the polymyxin hybrid and the composite delivery systems. All tested samples inhibited bacterial growth. The minimal inhibitory concentrations of the polymyxin B hybrid delivery system demonstrated a synergistic effect when compared with either the antibiotic or the silver nanoparticles alone.
Collapse
Affiliation(s)
- Dmitrii Iudin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia;
| | - Marina Vasilieva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
| | - Elena Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.K.); (E.D.)
| | - Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia;
| | - Elena Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.K.); (E.D.)
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University of Hannover, 30167 Hannover, Germany;
| | - Yury Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (D.I.); (M.V.); (Y.S.)
| |
Collapse
|
16
|
Caciandone M, Niculescu AG, Roșu AR, Grumezescu V, Negut I, Holban AM, Oprea O, Vasile BȘ, Bîrcă AC, Grumezescu AM, Stan MS, Anghel AG, Anghel I. PEG-Functionalized Magnetite Nanoparticles for Modulation of Microbial Biofilms on Voice Prosthesis. Antibiotics (Basel) 2021; 11:antibiotics11010039. [PMID: 35052915 PMCID: PMC8773041 DOI: 10.3390/antibiotics11010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
This study reports the fabrication of nanostructured coatings based on magnetite, polyethyleneglycol, and biologically active molecule (polymyxin B-PM) for producing biofilm-resistant surfaces (voice prosthesis). Magnetite nanoparticles (MNPs) have been synthesized and functionalized using a co-precipitation method and were further deposited into thin coatings using the matrix-assisted pulsed laser evaporation (MAPLE) technique. The obtained nanoparticles and coatings were characterized by X-ray diffraction (XRD), thermogravimetric analysis with differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy with selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FT-IR), and infrared microscopy (IRM). Their antibiofilm activity was tested against relevant Staphylococcus aureus and Pseudomonas aeruginosa bacterial strains. The Fe3O4@PEG/PM surface of modified voice prosthesis sections reduced the number of CFU/mL up to four orders of magnitude in the case of S. aureus biofilm. A more significant inhibitory effect is noticed in the case of P. aeruginosa up to five folds. These results highlight the importance of new Fe3O4@PEG/PM in the biomedical field.
Collapse
Affiliation(s)
- Mara Caciandone
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.C.); (A.G.A.); (I.A.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.R.R.); (B.Ș.V.); (A.C.B.)
| | - Aurelian Radu Roșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.R.R.); (B.Ș.V.); (A.C.B.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.); (I.N.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.); (I.N.)
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.R.R.); (B.Ș.V.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.R.R.); (B.Ș.V.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.-G.N.); (A.R.R.); (B.Ș.V.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
- Correspondence:
| | - Miruna Silvia Stan
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania;
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alina Georgiana Anghel
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.C.); (A.G.A.); (I.A.)
- ENT Department, Saint Mary Clinical Hospital Bucharest, 011172 Bucharest, Romania
| | - Ion Anghel
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.C.); (A.G.A.); (I.A.)
- “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| |
Collapse
|
17
|
Stepanova M, Solomakha O, Rabchinskii M, Averianov I, Gofman I, Nashchekina Y, Antonov G, Smirnov A, Ber B, Nashchekin A, Korzhikova-Vlakh E. Aminated Graphene-Graft-Oligo(Glutamic Acid) /Poly(ε-Caprolactone) Composites: Preparation, Characterization and Biological Evaluation. Polymers (Basel) 2021; 13:2628. [PMID: 34451168 PMCID: PMC8401938 DOI: 10.3390/polym13162628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Biodegradable and biocompatible composites are of great interest as biomedical materials for various regeneration processes such as the regeneration of bones, cartilage and soft tissues. Modification of the filler surface can improve its compatibility with the polymer matrix, and, as a result, the characteristics and properties of composite materials. This work is devoted to the synthesis and modification of aminated graphene with oligomers of glutamic acid and their use for the preparation of composite materials based on poly(ε-caprolactone). Ring-opening polymerization of N-carboxyanhydride of glutamic acid γ-benzyl ester was used to graft oligomers of glutamic acid from the surface of aminated graphene. The success of the modification was confirmed by Fourier-transform infrared and X-ray photoelectron spectroscopy as well as thermogravimetric analysis. In addition, the dispersions of neat and modified aminated graphene were analyzed by dynamic and electrophoretic light scattering to monitor changes in the characteristics due to modification. The poly(ε-caprolactone) films filled with neat and modified aminated graphene were manufactured and carefully characterized for their mechanical and biological properties. Grafting of glutamic acid oligomers from the surface of aminated graphene improved the distribution of the filler in the polymer matrix that, in turn, positively affected the mechanical properties of composite materials in comparison to ones containing the unmodified filler. Moreover, the modification improved the biocompatibility of the filler with human MG-63 osteoblast-like cells.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Olga Solomakha
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Maxim Rabchinskii
- Ioffe Institute, Politekhnicheskaya st. 26, 194021 St. Petersburg, Russia
| | - Ilia Averianov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Yuliya Nashchekina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Grigorii Antonov
- Ioffe Institute, Politekhnicheskaya st. 26, 194021 St. Petersburg, Russia
| | - Aleksey Smirnov
- Ioffe Institute, Politekhnicheskaya st. 26, 194021 St. Petersburg, Russia
| | - Boris Ber
- Ioffe Institute, Politekhnicheskaya st. 26, 194021 St. Petersburg, Russia
| | - Aleksey Nashchekin
- Ioffe Institute, Politekhnicheskaya st. 26, 194021 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
18
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Demyanova EV, Shcherbakova ES, Poshina DN, Shasherina AY, Anufrikov YA, Skorik YA. Hyaluronan/Diethylaminoethyl Chitosan Polyelectrolyte Complexes as Carriers for Improved Colistin Delivery. Int J Mol Sci 2021; 22:8381. [PMID: 34445088 PMCID: PMC8395075 DOI: 10.3390/ijms22168381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210-250 nm and a negative surface charge (ζ-potential = -19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30-40% and 85-90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 μg/mL.
Collapse
Affiliation(s)
- Natallia V. Dubashynskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Sergei V. Raik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Yaroslav A. Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, 197341 St. Petersburg, Russia;
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
- Research and Training Center of Molecular and Cellular Technologies, St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, 197376 St. Petersburg, Russia
| | - Elena V. Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Elena S. Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, 197110 St. Petersburg, Russia; (E.V.D.); (E.S.S.)
| | - Daria N. Poshina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| | - Anna Y. Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yuri A. Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, 198504 St. Petersburg, Russia; (A.Y.S.); (Y.A.A.)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi VO 31, 199004 St. Petersburg, Russia; (N.V.D.); (S.V.R.); (D.N.P.)
| |
Collapse
|
19
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Shcherbakova ES, Demyanova EV, Shasherina AY, Anufrikov YA, Poshina DN, Dobrodumov AV, Skorik YA. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int J Biol Macromol 2021; 187:157-165. [PMID: 34298050 DOI: 10.1016/j.ijbiomac.2021.07.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 μg/mL (against Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation; Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation; St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, St. Petersburg 197376, Russian Federation
| | - Elena S Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
20
|
Polymer Particles Bearing Recombinant LEL CD81 as Trapping Systems for Hepatitis C Virus. Pharmaceutics 2021; 13:pharmaceutics13050672. [PMID: 34067169 PMCID: PMC8151308 DOI: 10.3390/pharmaceutics13050672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C is one of the most common social diseases in the world. The improvements in both the early diagnostics of the hepatitis C and the treatment of acute viremia caused by hepatitis C virus are undoubtedly an urgent task. In present work, we offered the micro- and nanotraps for the capturing of HCV. As a capturing moiety, we designed and synthesized in E. coli a fusion protein consisting of large extracellular loop of CD81 receptor and streptavidin as spacing part. The obtained protein has been immobilized on the surface of PLA-based micro- and nanoparticles. The developed trapping systems were characterized in terms of their physico-chemical properties. In order to illustrate the ability of developed micro- and nanotraps to bind HCV, E2 core protein of HCV was synthesized as a fusion protein with GFP. Interaction of E2 protein and hepatitis C virus-mimicking particles with the developed trapping systems were testified by several methods.
Collapse
|
21
|
Nanogels Capable of Triggered Release. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This chapter provides an overview of soft and environmentally sensitive polymeric nanosystems, which are widely known as nanogels. These particles keep great promise to the area of drug delivery due to their high biocompatibility with body fluids and tissues, as well as due to their ability to encapsulate and release the loaded drugs in a controlled manner. For a long period of time, the controlled drug delivery systems were designed to provide long-termed or sustained release. However, some medical treatments such as cancer chemotherapy, protein and gene delivery do not require the prolonged release of the drug in the site of action. In contrast, the rapid increase of the drug concentration is needed for gaining the desired biological effect. Being very sensitive to surrounding media and different stimuli, nanogels can undergo physico-chemical transitions or chemical changes in their structure. Such changes can result in more rapid release of the drugs, which is usually referred to as triggered drug release. Herein we give the basic information on nanogel unique features, methods of sensitive nanogels preparation, as well as on main mechanisms of triggered release. Additionally, the triggered release of low-molecular drugs and biomacromolecules are discussed.
Collapse
|