1
|
Bouma RG, Nijen Twilhaar MK, Brink HJ, Affandi AJ, Mesquita BS, Olesek K, van Dommelen JMA, Heukers R, de Haas AM, Kalay H, Ambrosini M, Metselaar JM, van Rooijen A, Storm G, Oliveira S, van Kooyk Y, den Haan JMM. Nanobody-liposomes as novel cancer vaccine platform to efficiently stimulate T cell immunity. Int J Pharm 2024; 660:124254. [PMID: 38795934 DOI: 10.1016/j.ijpharm.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer vaccines can be utilized in combination with checkpoint inhibitors to optimally stimulate the anti-tumor immune response. Uptake of vaccine antigen by antigen presenting cells (APCs) is a prerequisite for T cell priming, but often relies on non-specific mechanisms. Here, we have developed a novel vaccination strategy consisting of cancer antigen-containing liposomes conjugated with CD169- or DC-SIGN-specific nanobodies (single domain antibodies) to achieve specific uptake by APCs. Our studies demonstrate efficient nanobody liposome uptake by human and murine CD169+ and DC-SIGN+ APCs in vitro and in vivo when compared to control liposomes or liposomes with natural ligands for CD169 and DC-SIGN. Uptake of CD169 nanobody liposomes resulted in increased T cell activation by human APCs and stimulated naive T cell priming in mouse models. In conclusion, while nanobody liposomes have previously been utilized to direct drugs to tumors, here we show that nanobody liposomes can be applied as vaccination strategy that can be extended to other receptors on APCs in order to elicit a potent immune response against tumor antigens.
Collapse
Affiliation(s)
- R G Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - M K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - H J Brink
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - A J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - B S Mesquita
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - K Olesek
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - J M A van Dommelen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - R Heukers
- QVQ Holding BV, Yalelaan 1, Utrecht 3584 CL, the Netherlands
| | - A M de Haas
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - H Kalay
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - M Ambrosini
- LIPOSOMA BV, Science Park 408, Amsterdam 1098 XH, the Netherlands
| | - J M Metselaar
- LIPOSOMA BV, Science Park 408, Amsterdam 1098 XH, the Netherlands; Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - A van Rooijen
- LIPOSOMA BV, Science Park 408, Amsterdam 1098 XH, the Netherlands
| | - G Storm
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Department of Biomaterials Science and Technology, University of Twente, Enschede 7500 AE, the Netherlands; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - S Oliveira
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands
| | - J M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands; Amsterdam institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Zhang J, Terreni M, Liu F, Sollogoub M, Zhang Y. Ganglioside GM3-based anticancer vaccines: Reviewing the mechanism and current strategies. Biomed Pharmacother 2024; 176:116824. [PMID: 38820973 DOI: 10.1016/j.biopha.2024.116824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Ganglioside GM3 is one of the most common membrane-bound glycosphingolipids. The over-expression of GM3 on tumor cells makes it defined as a tumor-associated carbohydrate antigen (TACA). The specific expression property in cancers, especially in melanoma, make it become an important target to develop anticancer vaccines or immunotherapies. However, in the manner akin to most TACAs, GM3 is an autoantigen facing with problems of low immunogenicity and easily inducing immunotolerance, which means itself only cannot elicit a powerful enough immune response to prevent or treat cancer. With a comparative understanding of the mechanisms that how immune system responses to the carbohydrate vaccines, this review summarizes the studies on the recent efforts to development GM3-based anticancer vaccines.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Marco Terreni
- Drug Sciences Department, University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Fang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, Paris 75005, France; College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Horie M, Takagane K, Itoh G, Kuriyama S, Yanagihara K, Yashiro M, Umakoshi M, Goto A, Arita J, Tanaka M. Exosomes secreted by ST3GAL5 high cancer cells promote peritoneal dissemination by establishing a premetastatic microenvironment. Mol Oncol 2024; 18:21-43. [PMID: 37716915 PMCID: PMC10766203 DOI: 10.1002/1878-0261.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 09/18/2023] Open
Abstract
Peritoneal dissemination of cancer affects patient survival. The behavior of peritoneal mesothelial cells (PMCs) and immune cells influences the establishment of a microenvironment that promotes cancer cell metastasis in the peritoneum. Here, we investigated the roles of lactosylceramide alpha-2,3-sialyltransferase (ST3G5; also known as ST3GAL5 and GM3 synthase) in the exosome-mediated premetastatic niche in peritoneal milky spots (MSs). Exosomes secreted from ST3G5high cancer cells (ST3G5high -cExos) were found to contain high levels of hypoxia-inducible factor 1-alpha (HIF1α) and accumulated in MSs via uptake in macrophages (MΦs) owing to increased expression of sialic acid-binding Ig-like lectin 1 (CD169; also known as SIGLEC1). ST3G5high -cExos induced pro-inflammatory cytokines and glucose metabolic changes in MΦs, and the interaction of these MΦs with PMCs promoted mesothelial-mesenchymal transition (MMT) in PMCs, thereby generating αSMA+ myofibroblasts. ST3G5high -cExos also increased the expression of immune checkpoint molecules and T-cell exhaustion in MSs, which accelerated metastasis to the omentum. These events were prevented following ST3G5 depletion in cancer cells. Mechanistically, ST3G5high -cExos upregulated chemokines, including CC-chemokine ligand 5 (CCL5), in recipient MΦs and dendritic cells (DCs), which induced MMT and immunosuppression via activation of signal transducer and activator of transcription 3 (STAT3). Maraviroc, a C-C chemokine receptor type 5 (CCR5) antagonist, prevented ST3G5high -cExo-mediated MMT, T-cell suppression, and metastasis in MSs. Our results suggest ST3G5 as a suitable therapeutic target for preventing cExo-mediated peritoneal dissemination.
Collapse
Affiliation(s)
- Misato Horie
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineJapan
| | - Kurara Takagane
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| | - Go Itoh
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| | - Sei Kuriyama
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| | - Kazuyoshi Yanagihara
- Division of Rare Cancer ResearchNational Cancer Center Research InstituteTokyoJapan
| | - Masakazu Yashiro
- Department of Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineJapan
| | - Michinobu Umakoshi
- Department of Cellular and Organ PathologyAkita University Graduate School of MedicineJapan
| | - Akiteru Goto
- Department of Cellular and Organ PathologyAkita University Graduate School of MedicineJapan
| | - Junichi Arita
- Department of Gastroenterological SurgeryAkita University Graduate School of MedicineJapan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and BiochemistryAkita University Graduate School of MedicineJapan
| |
Collapse
|
4
|
He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Recent Advances of Emerging Spleen-Targeting Nanovaccines for Immunotherapy. Adv Healthc Mater 2023; 12:e2300351. [PMID: 37289567 DOI: 10.1002/adhm.202300351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Vaccines provide a powerful tool to modulate the immune system for human disease prevention and treatment. Classical vaccines mainly initiate immune responses in the lymph nodes (LNs) after subcutaneous injection. However, some vaccines suffer from inefficient delivery of antigens to LNs, undesired inflammation, and slow immune induction when encountering the rapid proliferation of tumors. Alternatively, the spleen, as the largest secondary lymphoid organ with a high density of antigen-presenting cells (APCs) and lymphocytes, acts as an emerging target organ for vaccinations in the body. Upon intravenous administration, the rationally designed spleen-targeting nanovaccines can be internalized by the APCs in the spleen to induce selective antigen presentation to T and B cells in their specific sub-regions, thereby rapidly boosting durable cellular and humoral immunity. Herein, the recent advances of spleen-targeting nanovaccines for immunotherapy based on the anatomical architectures and functional zones of the spleen, as well as their limitations and perspectives for clinical applications are systematically summarized. The aim is to emphasize the design of innovative nanovaccines for enhanced immunotherapy of intractable diseases in the future.
Collapse
Affiliation(s)
- Xuanyi He
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqing Tang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Chen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Schmidt EN, Lamprinaki D, McCord KA, Joe M, Sojitra M, Waldow A, Nguyen J, Monyror J, Kitova EN, Mozaneh F, Guo XY, Jung J, Enterina JR, Daskhan GC, Han L, Krysler AR, Cromwell CR, Hubbard BP, West LJ, Kulka M, Sipione S, Klassen JS, Derda R, Lowary TL, Mahal LK, Riddell MR, Macauley MS. Siglec-6 mediates the uptake of extracellular vesicles through a noncanonical glycolipid binding pocket. Nat Commun 2023; 14:2327. [PMID: 37087495 PMCID: PMC10122656 DOI: 10.1038/s41467-023-38030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Immunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer. A panel of synthetic neoglycolipids is used to probe the specificity of this glycolipid binding pocket on Siglec-6, leading to the development of a neoglycolipid with higher avidity for Siglec-6 compared to natural glycolipids. This neoglycolipid facilitates the delivery of liposomes to Siglec-6 on human mast cells, memory B-cells and placental syncytiotrophoblasts. A physiological relevance for glycolipid recognition by Siglec-6 is revealed for the binding and internalization of extracellular vesicles. These results demonstrate a unique and physiologically relevant ability of Siglec-6 to recognize glycolipids in a membrane.
Collapse
Affiliation(s)
- Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Maju Joe
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ayk Waldow
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Nguyen
- Department of Obstetrics & Gynaecology and Physiology University of Alberta, Edmonton, AB, Canada
| | - John Monyror
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Fahima Mozaneh
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Xue Yan Guo
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Amanda R Krysler
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | | | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lori J West
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Marianne Kulka
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
- National Research Council, Edmonton, AB, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Meghan R Riddell
- Department of Obstetrics & Gynaecology and Physiology University of Alberta, Edmonton, AB, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
7
|
Herzog S, Fragkou PC, Arneth BM, Mkhlof S, Skevaki C. Myeloid CD169/Siglec1: An immunoregulatory biomarker in viral disease. Front Med (Lausanne) 2022; 9:979373. [PMID: 36213653 PMCID: PMC9540380 DOI: 10.3389/fmed.2022.979373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
CD169, also known as Siglec1 or Sialoadhesin (Sn), is a surface adhesion molecule on human myeloid cells. Being part of the Siglec family, it acts as a receptor for sialylated molecular structures, which are found among various pathogenic and non-pathogenic ligands. Recent data suggest that CD169 may represent a promising new biomarker in acute respiratory and non-respiratory viral infections, such as SARS-CoV-2, Respiratory syncytial virus (RSV) and Human immunodeficiency virus (HIV). Therein lies a great potential to sufficiently differentiate viral from bacterial infection, which has been an incessant challenge in the clinical management of infectious disease. CD169 equips myeloid cells with functions, reaching far beyond pathogen elimination. In fact, CD169 seems to crosslink innate and adaptive immunity by antigen presentation and consecutive pathogen elimination, embodying a substantial pillar of immunoregulation. Yet, our knowledge about the kinetics, mechanisms of induction, signaling pathways and its precise role in host-pathogen interaction remains largely obscure. In this review, we describe the role of CD169 as a potentially novel diagnostic biomarker for respiratory viral infection by evaluating its strengths and weaknesses and considering host factors that are involved in pathogenesis of virus infection. Finally, this brief review aims to point out shortcomings of available evidence, thus, guiding future work revolving the topic.
Collapse
Affiliation(s)
- Silva Herzog
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Paraskevi C. Fragkou
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Borros M. Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
| | - Samr Mkhlof
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University Giessen, Giessen, Germany
- The European Society of Clinical Microbiology and Infection (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
- *Correspondence: Chrysanthi Skevaki,
| |
Collapse
|
8
|
Oros-Pantoja R, Córdoba-Adaya JC, Torres-García E, Morales-Avila E, Aranda-Lara L, Santillán-Benítez JG, Sánchez-Holguín M, Hernández-Herrera NO, Otero G, Isaac-Olivé K. Preclinical evaluation of early multi-organ toxicity induced by liposomal doxorubicin using 67Ga-citrate. Nanotoxicology 2022; 16:247-264. [DOI: 10.1080/17435390.2022.2071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Julio César Córdoba-Adaya
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Eugenio Torres-García
- Laboratorio de Dosimetría y Simulación Monte Carlo, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Enrique Morales-Avila
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Liliana Aranda-Lara
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Jonnathan G Santillán-Benítez
- Laboratorio de Investigación en Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | | | - Gloria Otero
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Keila Isaac-Olivé
- Laboratorio de Investigación en Teranóstica, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
9
|
Benne N, Ter Braake D, Stoppelenburg AJ, Broere F. Nanoparticles for Inducing Antigen-Specific T Cell Tolerance in Autoimmune Diseases. Front Immunol 2022; 13:864403. [PMID: 35392079 PMCID: PMC8981588 DOI: 10.3389/fimmu.2022.864403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases affect many people worldwide. Current treatment modalities focus on the reduction of disease symptoms using anti-inflammatory drugs which can lead to side effects due to systemic immune suppression. Restoration of immune tolerance by down-regulating auto-reactive cells in an antigen-specific manner is currently the “holy grail” for the treatment of autoimmune diseases. A promising strategy is the use of nanoparticles that can deliver antigens to antigen-presenting cells which in turn can enhance antigen-specific regulatory T cells. In this review, we highlight some promising cell targets (e.g. liver sinusoidal endothelial cells and splenic marginal zone macrophages) for exploiting natural immune tolerance processes, and several strategies by which antigen-carrying nanoparticles can target these cells. We also discuss how nanoparticles carrying immunomodulators may be able to activate tolerance in other antigen-presenting cell types. Finally, we discuss some important aspects that must be taken into account when translating data from animal studies to patients.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniëlle Ter Braake
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arie Jan Stoppelenburg
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Van Hees S, Elbrink K, De Schryver M, Delputte P, Kiekens F. Targeting of sialoadhesin-expressing macrophages through antibody-conjugated (polyethylene glycol) poly(lactic-co-glycolic acid) nanoparticles. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:65. [PMID: 35311024 PMCID: PMC8919690 DOI: 10.1007/s11051-022-05451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
This research aims to evaluate different-sized nanoparticles consisting of (polyethylene glycol) (PEG) poly(lactic-co-glycolic acid) (PLGA), loaded with fluorescein isothiocyanate for nanoparticle uptake and intracellular fate in sialoadhesin-expressing macrophages, while being functionalized with anti-sialoadhesin antibody. Sialoadhesin is a macrophage-restricted receptor, expressed on certain populations of resident tissue macrophages, yet is also upregulated in some inflammatory conditions. The nanocarriers were characterized for nanoparticle size (84-319 nm), zeta potential, encapsulation efficiency, and in vitro dye release. Small (86 nm) antibody-functionalized PEG PLGA nanoparticles showed persisting benefit from sialoadhesin-targeting after 24 h compared to the control groups. For small (105 nm) PLGA nanoparticles, uptake rate was higher for antibody-conjugated nanoparticles, though the total amount of uptake was not enhanced after 24 h. For both plain and functionalized small-sized (PEG) PLGA nanoparticles, no co-localization between nanoparticles and (early/late) endosomes nor lysosomes could be observed after 1-, 4-, or 24-h incubation time. In conclusion, decorating (PEG) PLGA nanocarriers with anti-sialoadhesin antibodies positively impacts macrophage targeting, though it was found to be formulation-specific.
Collapse
Affiliation(s)
- Sofie Van Hees
- Department of Pharmaceutical Sciences, Laboratory for Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kimberley Elbrink
- Department of Pharmaceutical Sciences, Laboratory for Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Marjorie De Schryver
- Department of Biomedical Sciences, Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Department of Biomedical Sciences, Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Filip Kiekens
- Department of Pharmaceutical Sciences, Laboratory for Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
11
|
Nijen Twilhaar MK, Czentner L, Bouma RG, Olesek K, Grabowska J, Wang AZ, Affandi AJ, Belt SC, Kalay H, van Nostrum CF, van Kooyk Y, Storm G, den Haan JMM. Incorporation of Toll-Like Receptor Ligands and Inflammasome Stimuli in GM3 Liposomes to Induce Dendritic Cell Maturation and T Cell Responses. Front Immunol 2022; 13:842241. [PMID: 35251040 PMCID: PMC8895246 DOI: 10.3389/fimmu.2022.842241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer vaccination aims to activate immunity towards cancer cells and can be achieved by delivery of cancer antigens together with immune stimulatory adjuvants to antigen presenting cells (APC). APC maturation and antigen processing is a subsequent prerequisite for T cell priming and anti-tumor immunity. In order to specifically target APC, nanoparticles, such as liposomes, can be used for the delivery of antigen and adjuvant. We have previously shown that liposomal inclusion of the ganglioside GM3, an endogenous ligand for CD169, led to robust uptake by CD169-expressing APC and resulted in strong immune responses when supplemented with a soluble adjuvant. To minimize the adverse effects related to a soluble adjuvant, immune stimulatory molecules can be incorporated in liposomes to achieve targeted delivery of both antigen and adjuvant. In this study, we incorporated TLR4 (MPLA) or TLR7/8 (3M-052) ligands in combination with inflammasome stimuli, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) or muramyl dipeptide (MDP), into GM3 liposomes. Incorporation of TLR and inflammasome ligands did not interfere with the uptake of GM3 liposomes by CD169-expressing cells. GM3 liposomes containing a TLR ligand efficiently matured human and mouse dendritic cells in vitro and in vivo, while inclusion of PGPC or MDP had minor effects on maturation. Immunization with MPLA-containing GM3 liposomes containing an immunogenic synthetic long peptide stimulated CD4+ and CD8+ T cell responses, but additional incorporation of either PGPC or MDP did not translate into stronger immune responses. In conclusion, our study indicates that TLRL-containing GM3 liposomes are effective vectors to induce DC maturation and T cell priming and thus provide guidance for further selection of liposomal components to optimally stimulate anti-cancer immune responses.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Aru Zeling Wang
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J. Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Saskia C. Belt
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
13
|
Affandi AJ, Olesek K, Grabowska J, Nijen Twilhaar MK, Rodríguez E, Saris A, Zwart ES, Nossent EJ, Kalay H, de Kok M, Kazemier G, Stöckl J, van den Eertwegh AJM, de Gruijl TD, Garcia-Vallejo JJ, Storm G, van Kooyk Y, den Haan JMM. CD169 Defines Activated CD14 + Monocytes With Enhanced CD8 + T Cell Activation Capacity. Front Immunol 2021; 12:697840. [PMID: 34394090 PMCID: PMC8356644 DOI: 10.3389/fimmu.2021.697840] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022] Open
Abstract
Monocytes are antigen-presenting cells (APCs) that play diverse roles in promoting or regulating inflammatory responses, but their role in T cell stimulation is not well defined. In inflammatory conditions, monocytes frequently show increased expression of CD169/Siglec-1, a type-I interferon (IFN-I)-regulated protein. However, little is known about the phenotype and function of these CD169+ monocytes. Here, we have investigated the phenotype of human CD169+ monocytes in different diseases, their capacity to activate CD8+ T cells, and the potential for a targeted-vaccination approach. Using spectral flow cytometry, we detected CD169 expression by CD14+ CD16- classical and CD14+ CD16+ intermediate monocytes and unbiased analysis showed that they were distinct from dendritic cells, including the recently described CD14-expressing DC3. CD169+ monocytes expressed higher levels of co-stimulatory and HLA molecules, suggesting an increased activation state. IFNα treatment highly upregulated CD169 expression on CD14+ monocytes and boosted their capacity to cross-present antigen to CD8+ T cells. Furthermore, we observed CD169+ monocytes in virally-infected patients, including in the blood and bronchoalveolar lavage fluid of COVID-19 patients, as well as in the blood of patients with different types of cancers. Finally, we evaluated two CD169-targeting nanovaccine platforms, antibody-based and liposome-based, and we showed that CD169+ monocytes efficiently presented tumor-associated peptides gp100 and WT1 to antigen-specific CD8+ T cells. In conclusion, our data indicate that CD169+ monocytes are activated monocytes with enhanced CD8+ T cell stimulatory capacity and that they emerge as an interesting target in nanovaccine strategies, because of their presence in health and different diseases.
Collapse
Affiliation(s)
- Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maarten K Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Eline S Zwart
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther J Nossent
- Department of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences Research Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michael de Kok
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Johannes Stöckl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, Netherlands.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Nijen Twilhaar MK, Czentner L, van Nostrum CF, Storm G, den Haan JMM. Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines. Pharmaceutics 2021; 13:954. [PMID: 34202919 PMCID: PMC8308965 DOI: 10.3390/pharmaceutics13070954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
15
|
Abstract
A dense and diverse array of glycans on glycoproteins and glycolipids decorate all cell surfaces. In vertebrates, many of these carry sialic acid, in a variety of linkages and glycan contexts, as their outermost sugar moiety. Among their functions, glycans engage complementary glycan binding proteins (lectins) to regulate cell physiology. Among the glycan binding proteins are the Siglecs, sialic acid binding immunoglobulin-like lectins. In humans, there are 14 Siglecs, most of which are expressed on overlapping subsets of immune system cells. Each Siglec engages distinct, endogenous sialylated glycans that initiate signaling programs and regulate cellular responses. Here, we explore the emerging science of Siglec ligands, including endogenous sialoglycoproteins and glycolipids and synthetic sialomimetics. Knowledge in this field promises to reveal new molecular pathways controlling cell physiology and new opportunities for therapeutic intervention.
Collapse
|
16
|
Grabowska J, Stolk DA, Nijen Twilhaar MK, Ambrosini M, Storm G, van der Vliet HJ, de Gruijl TD, van Kooyk Y, den Haan JM. Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8 + T Cell Responses via CD169 + Macrophages and cDC1. Vaccines (Basel) 2021; 9:vaccines9010056. [PMID: 33467048 PMCID: PMC7830461 DOI: 10.3390/vaccines9010056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should therefore comprise a potent antigen and adjuvant. Antigen targeting to splenic CD169+ macrophages was shown to induce robust CD8+ T cell responses via antigen transfer to cDC1. Interestingly, CD169+ macrophages can also activate type I natural killer T-cells (NKT). NKT activation via ligands such as α-galactosylceramide (αGC) serve as natural adjuvants through dendritic cell activation. Here, we incorporated ganglioside GM3 and αGC in ovalbumin (OVA) protein-containing liposomes to achieve both CD169+ targeting and superior DC activation. The systemic delivery of GM3-αGC-OVA liposomes resulted in specific uptake by splenic CD169+ macrophages, stimulated strong IFNγ production by NKT and NK cells and coincided with the maturation of cDC1 and significant IL-12 production. Strikingly, superior induction of OVA-specific CD8+ T cells was detected after immunization with GM3-αGC-OVA liposomes. CD8+ T cell activation, but not B cell activation, was dependent on CD169+ macrophages and cDC1, while activation of NKT and NK cells were partially mediated by cDC1. In summary, GM3-αGC antigen-containing liposomes are a potent vaccination platform that promotes the interaction between different immune cell populations, resulting in strong adaptive immunity and therefore emerge as a promising anti-cancer vaccination strategy.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Dorian A. Stolk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Joke M.M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
- Correspondence: ; Tel.: +31-20-4448080
| |
Collapse
|