1
|
Omer AM, Elmeligy MA, Abd El-Monaem EM, Naiel BH, Barlog M, Heydari A. pH-sensitive aminated chitosan/carboxymethyl cellulose/aminated graphene oxide coated composite microbeads for efficient encapsulation and sustained release of 5-fluorouracil. Int J Biol Macromol 2024; 283:137250. [PMID: 39522920 DOI: 10.1016/j.ijbiomac.2024.137250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The application of smart pH-sensitive carriers has become an ideal choice for administering drugs with desired release profiles. Although pH-sensitive microbeads offer distinct benefits for delivering anticancer drugs orally, they encounter drawbacks, including low encapsulation efficiency, weak mechanical stability, biocompatibility concerns, and the risk of abrupt release. This study focuses on developing pH-sensitive coated composite microbeads for effective encapsulation and sustained release of 5-fluorouracil (5-FU). Aminated graphene oxide (AmGO) was integrated into carboxymethyl cellulose (CMC) microbeads, which were subsequently coated with an aminated chitosan (AmCs) derivative. Various analysis techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyzer (TGA), zeta potential (ZP), and mechanical testing, were utilized to characterize the microbeads. The AmCs@CMC@AmGO composite microbeads demonstrated a compact structure with enhanced mechanical properties, achieving a maximum Young's modulus value of 35.99 N/mm2 compared to 25.95 N/mm2 for pure CMC microbeads. Moreover, pH-sensitivity and water uptake studies (at pH 1.2 and pH 7.4) revealed significant tunability of the composite microbeads by altering the AmGO and AmCs ratios. The coated composite microbeads encapsulated approximately 86.4 % of 5-FU compared to 47 % for CMC microbeads. The burst release of 5-FU at pH 7.4 was significantly reduced, with sustained release reaching 51 % over 24 h. The predominant release mechanism was Fickian diffusion, which well-described by the Peppas-Sahlin kinetic model. The developed microbeads exposed improved biodegradability and non-toxicity toward normal colon cells, while exhibiting notable toxicity against cancerous cells, emphasizing its potential for anticancer drug delivery.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Mahmoud A Elmeligy
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Genomic Signature Cancer Center, Global Teaching Hospital, University of Tanta, Tanta 31527, Egypt
| | | | - Basma H Naiel
- Chemistry Department, Faculty of Science, Alexandria University, 21321, Alexandria, Egypt
| | - Martin Barlog
- Institute of Inorganic Chemistry of Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84536, Slovakia
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia.
| |
Collapse
|
2
|
Jin Z, Fu Y, Zhang Y, Guo S. Lesion-Adaptative Bionic Tracheal Stent with Local Paclitaxel Release for Enhanced Therapy of Tracheal Tumor and Stenosis. ACS Biomater Sci Eng 2024; 10:6677-6689. [PMID: 39325474 DOI: 10.1021/acsbiomaterials.4c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The efficacy of tracheal stents (TSs) in treating malignant tracheal stenosis is often compromised by tumor overgrowth, leading to restenosis and other stent-related complications that conventional chemotherapy and commercial stents fail to adequately address. Drug-loaded tracheal stents have the potential to deliver chemotherapeutics directly to tumors while relieving stenosis, but their effectiveness has yet to be studied in vivo. The design of drug-loaded tracheal stents adapting to lesions to achieve optimal antitumor effects and minimal side effects remains an area worth exploring. In this study, a lesion-adaptive bionic tracheal stent (PTX-TS) designed for the dual purpose of treating tracheal tumors and associated stenosis was developed. This novel PTX-TS was evaluated using an orthotopic rabbit model of malignant tracheal stenosis, newly established in this study. The rabbit lesions were precisely scanned using computed tomography (CT) for 3D reconstruction, enabling the design of a PTX-TS that fit both the tumor and airway dimensions to ensure complete tumor coverage and effective dilation of the stenotic airway. The PTX-TS featured a bilayer structure including a surface layer of PTX/ethylene-vinyl acetate copolymer (EVA) blends for sustained PTX release and an inner layer of polycaprolactone (PCL)/EVA blends for appropriate mechanical performance. The stent was fabricated layer by layer using a custom-built 3D printer, and the drug-loaded surface layer was printed using a novel liquid printing technique developed in our lab, achieving a high drug loading of up to 80%. The dose of the PTX-TS was investigated and set as 7.5 mg/cm2, which leads to maximum tissue permeation. With its bionic cross-sectional C-shaped structure, the PTX-TS demonstrated excellent radial flexibility, allowing successful implantation at the lesion site using a specially designed delivery apparatus, where it self-expanded to relieve stenosis. Additionally, the PTX-TS effectively delivered PTX directly to the tracheal tumor, resulting in superior antitumor efficacy without significant toxicity or complications.
Collapse
Affiliation(s)
- Zhu Jin
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiaotong University Chongqing Research Institute, Chongqing 401135, China
| | - Yuli Fu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujia Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengrong Guo
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Hu C, Wei H, Chen H, Zhang B, Zhang W, Wang G, Guo T. Facile fabrication of temperature/pH dual sensitive hydrogels based on cellulose and polysuccinimide through aqueous amino-succinimide reaction. Int J Biol Macromol 2024; 267:131543. [PMID: 38614169 DOI: 10.1016/j.ijbiomac.2024.131543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A temperature/pH dual sensitive hydrogel with a semi-interpenetrating network (semi-IPN) structure was synthesized through an aqueous amino-succinimide reaction between water-soluble polysuccinimide and polyethyleneimine in the presence of thermosensitive cellulose derivatives. Single-factor experiments were carried out to optimize the preparation conditions of the semi-IPN hydrogel. The swelling behavior and cytotoxicity assay of the hydrogel were tested. Finally, taking 5- fluorouracil (5-Fu) as a model drug, the release performance of the 5-Fu-loaded hydrogel was investigated. The results indicated that the swelling ratio (SR) first decreased and then increased when the pH of the solutions ascended from 2 to 10. The SR decreased with the increase in temperature. In addition, the swelling behavior of the hydrogel was reversible and reproducible under different pH values and temperatures. The prepared hydrogels had good cytocompatibility. The release behavior of 5-Fu was most consistent with the Korsmeyer-Peppas model and followed the case II diffusion. The acidic environment was beneficial for the release of 5-Fu. The preparation process of the semi-IPN hydrogel is simple and the reaction can proceed quickly in water. The strategy introduced here has great potential for application in the preparation of drug carriers.
Collapse
Affiliation(s)
- Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Hongli Chen
- The Third Hospital of Xinxiang Medical University, Xinxiang, PR China.
| | - Bing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
4
|
Youssef SH, Ganesan R, Amirmostofian M, Kim S, Polara R, Afinjuomo F, Song Y, Chereda B, Singhal N, Robinson N, Garg S. Printing a cure: A tailored solution for localized drug delivery in liver cancer treatment. Int J Pharm 2024; 651:123790. [PMID: 38190951 DOI: 10.1016/j.ijpharm.2024.123790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Adjuvant chemotherapy is highly recommended for liver cancer to enhance survival rates due to its tendency to recur frequently. Localized drug-eluting implants have gained traction as an alternative to overcome the limitations of systemic chemotherapy. This work describes the development of biodegradable 3D printed (3DP) bilayer films loaded with 5-fluorouracil (5FU) and cisplatin (Cis) with different infill percentages where the 5FU layers were 40%, 30%, and 30% and Cis layers were 10%, 15%, and 10% for films A, B, and C, respectively. The relevant characterization tests were performed, and the drug content of films was 0.68, 0.50, and 0.50 mg of 5FU and 0.39, 0.80, and 0.34 mg of Cis for films A, B, and C, respectively. Cis release was affected by the alterations to the film design, where films A, B, and C showed complete release at 12, 14, and 23 days, respectively. However, 5FU was released over 24 h for all films. The films were stable for up to two weeks after storage at 25 °C/65% relative humidity and four weeks at 4 °C where drug content, tensile strength, FTIR, and thermal analysis results demonstrated negligible alterations. The cytotoxicity of the films was assessed by MTS assays using HepG2 cell lines demonstrating up to 81% reduction in cell viability compared to blank films. Moreover, apoptosis was confirmed by Western Blots and the determination of mitochondrial cell potential, highlighting the potential of these films as a promising approach in adjuvant chemotherapy.
Collapse
Affiliation(s)
- Souha H Youssef
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | | | - Sangseo Kim
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Ruhi Polara
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia
| | - Bradley Chereda
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Nimit Singhal
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia; Dept of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia; Discipline of Medicine and the Faculty of Health Science, University of Adelaide, Adelaide, SA, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Feng Y, Han Z, Chen C, Wang X, Liu J, Khan Y, Xie M, Chen Y, Zhang Y, Li G. Psoralea corylifolia formula extract-loaded silk fibroin/polycaprolactone fibrous membrane for the treatment of colorectal cancer. Colloids Surf B Biointerfaces 2024; 233:113635. [PMID: 37976725 DOI: 10.1016/j.colsurfb.2023.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/06/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Intestinal obstructions caused by intestinal tumors pose life-threatening risks to patients. Adjuvant treatment using intestinal stents carrying drug loaded membranes has the advantages of timely relief of intestinal obstruction, as well as effective inhibition of tumor progression. The present work is to develop an intestinal stent loaded with a combination of traditional Chinese medicines capable of good biocompatibility, degradability, sustained drug release and anti-tumor properties. The drug combination extract was obtained from Psoralea corylifolia formula (PCF) and then was loaded into silk fibroin (SF)/polycaprolactone (PCL) fibrous membranes using emulsion electrospinning technology. Results showed that the membrane prepared by emulsion electrospinning technology has apparent core-shell structure, and the mechanical property and hydrophilicity of the membrane are gradually improved with the addition of PCF. Drug sustained release results demonstrated that there were no bursting phenomena, and showed a gradual sustained release up to 400 h. The antitumor efficacy was assessed in vitro using a human colorectal cancer cell line HCT-116 and an epithelial cell line NCM-460. Results showed that this drug-loaded membrane sustained antitumor cell growth performance, indicating its great potential for clinical treatment for intestinal cancer in the near future.
Collapse
Affiliation(s)
- Yusheng Feng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhifen Han
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai 201203, China
| | - Chong Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jing Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yousef Khan
- Department of Biomedical Engineering, 4 Colby Street, Tufts University, Medford, MA 02155, USA
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yufeng Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China.
| | - Yue Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Department of Medical Oncology and Cancer Institute of Medicine, Shuguang Hospital, Shanghai 201203, China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
6
|
Nguyen TM, Jambhrunkar M, Wong SS, Ross DM, Joyce P, Finnie JW, Manavis J, Bremmell K, Pitman MR, Prestidge CA. Targeting Acute Myeloid Leukemia Using Sphingosine Kinase 1 Inhibitor-Loaded Liposomes. Mol Pharm 2023; 20:3937-3946. [PMID: 37463151 DOI: 10.1021/acs.molpharmaceut.3c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Acute myeloid leukemia (AML) kills 75% of patients and represents a major clinical challenge with a need to improve on current treatment approaches. Targeting sphingosine kinase 1 with a novel ATP-competitive-inhibitor, MP-A08, induces cell death in AML. However, limitations in MP-A08's "drug-like properties" (solubility, biodistribution, and potency) hinder its pathway to the clinic. This study demonstrates a liposome-based delivery system of MP-A08 that exhibits enhanced MP-A08 potency against AML cells. MP-A08-liposomes increased MP-A08 efficacy against patient AML cells (>140-fold) and significantly prolonged overall survival of mice with human AML disease (P = 0.03). The significant antileukemic property of MP-A08-liposomes could be attributed to its enhanced specificity, bioaccessibility, and delivery to the bone marrow, as demonstrated in the pharmacokinetic and biodistribution studies. Our findings indicate that MP-A08-liposomes have potential as a novel treatment for AML.
Collapse
Affiliation(s)
- Thao M Nguyen
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Manasi Jambhrunkar
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - Sook S Wong
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, South Australia 5001, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia 5001, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Jim Manavis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Kristen Bremmell
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - Melissa R Pitman
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| |
Collapse
|
7
|
Ahmed MM, Ameen MSM, Abazari M, Badeleh SM, Rostamizadeh K, Mohammed SS. Chitosan-decorated and tripolyphosphate-crosslinked pH-sensitive niosomal nanogels for Controlled release of fluoropyrimidine 5-fluorouracil. Biomed Pharmacother 2023; 164:114943. [PMID: 37267634 DOI: 10.1016/j.biopha.2023.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the present study, 5-fluorouracil-loaded niosomal nanoparticles were successfully prepared and coated with chitosan and subsequently crosslinked by tripolyphosphate to form niosomal nanogels. The prepared niosomal formulations were fully characterized for their particle size, zeta potential, particle morphology, drug entrapment efficiency, and in vitro drug release profile. The prepared niosomal nanocarriers exhibited nanoscale particle sizes of 165.35 ± 2.75-322.85 ± 2.75 nm. Chitosan-coated and TPP-crosslinked niosomes exhibited a slightly decreased in particle size and a switch of zeta potential from negative to positive values. In addition, high yield percentage, drug encapsulation efficiency, and drug loading values of 92.11 ± 2.07 %, 66.59 ± 6.06, and 4.65 ± 0.5 were obtained for chitosan-coated formulations, respectively. Moreover, lowering the rate of 5-FU in vitro release was achieved within 72 h by using chitosan-coated formulations. All prepared formulations revealed hemocompatible properties in hemolysis assay with less than 5 % hemolysis percentage at their higher possible concentrations (500 µM and 1 mM). The cell viability by MTT assay showed higher anticancer activity against B16F10 cancerous cells and lower cytotoxicity toward NIH3T3 normal cells than control and pure 5-FU in the studied concentration range (10-100 µM). Investigating the cell migration inhibition properties of fabricated formulations revealed similar results with in vitro cell viability assay with a higher migration inhibition rate for B16F10 cells than NIH3T3 cells, controls, and free 5-FU.
Collapse
Affiliation(s)
- Mohammed Mahmood Ahmed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| | | | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral sciences, Department of Pharmacology, School of medicine, University of Washington, WA, USA.
| | - Shahen Salih Mohammed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| |
Collapse
|
8
|
Pachauri A, Chitme H, Visht S, Chidrawar V, Mohammed N, Abdel-Wahab BA, Khateeb MM, Habeeb MS, Orabi MAA, Bakir MB. Permeability-Enhanced Liposomal Emulgel Formulation of 5-Fluorouracil for the Treatment of Skin Cancer. Gels 2023; 9:gels9030209. [PMID: 36975657 PMCID: PMC10048565 DOI: 10.3390/gels9030209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The plain 5-fluorouracil (5FU) formulations available in the market are associated with adverse effects such as skin irritation, pruritus, redness, blisters, allergy, and dryness on the site of application. The objective of the present study was to develop a liposomal emulgel of 5FU with increased skin permeability and efficacy using clove oil and eucalyptus oil along with pharmaceutically acceptable carriers, excipients, stabilizers, binders, and additives. A series of seven formulations were developed and evaluated for their entrapment efficiency, in vitro release profile, and cumulative drug release profile. The compatibility of drugs and excipients, as confirmed by FTIR (fourier-transform infrared spectroscopy) and DSC (differential scanning calorimetry) as well as SEM (scanning electron microscopy) and TEM (transmission electron microscopy) studies, revealed that the size and shape of liposomes are smooth and spherical, and the liposomes are non-aggregated. To understand their efficacy, the optimized formulations were evaluated for cytotoxicity using B16-F10 mouse skin melanoma cells. The eucalyptus oil and clove oil-containing preparation significantly produced a cytotoxic effect against a melanoma cell line. The addition of clove oil and eucalyptus oil increased the efficacy of the formulation by improving skin permeability and reducing the dose required for the anti-skin cancer activity.
Collapse
Affiliation(s)
- Ankur Pachauri
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Havagiray Chitme
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
- Correspondence: ; Tel.: +91-135-7144000
| | - Sharad Visht
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Vijay Chidrawar
- Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu 515721, Andhra Pradesh, India
| | - Nawaj Mohammed
- Raghavendra Institute of Pharmaceutical Education and Research, Chiyyedu 515721, Andhra Pradesh, India
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Masood Medleri Khateeb
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | | | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia
| | - Marwa B. Bakir
- Department of Pharmacology, College of Medicine, Najran University, Najran P.O. Box 1988, Saudi Arabia
| |
Collapse
|
9
|
Youssef SH, Kim S, Khetan R, Afinjuomo F, Song Y, Garg S. The development of 5-fluorouracil biodegradable implants: A comparative study of PCL/PLGA blends. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
10
|
Structural optimization and in vivo evaluation of a colorectal stent with anti-migration and anti-tumor properties. Acta Biomater 2022; 154:123-134. [PMID: 36306985 DOI: 10.1016/j.actbio.2022.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023]
Abstract
Clinically, colorectal stents can only palliatively relieve obstruction caused by colorectal cancer (CRC), with a high incidence of stent migration and tumor-related re-obstruction. To overcome these shortcomings, we developed a colorectal stent composed of a structure-optimized nitinol braided stent and a tubular film including an inner layer of poly (ethylene-co-vinyl acetate) (EVA) and a segmental outer layer of EVA with paclitaxel (PTX). The braiding pattern, segment number, and end shape of the stent were optimized based on the mechanical properties, ex vivo and in vivo anti-migration performance, and tissue response of the stent. The optimized nitinol stent had a structure of one middle segment in a hook-pattern and two end segments in a cross-pattern with two studs on each end in a staggered arrangement. Structure-optimized colorectal stents were prepared and evaluated in vivo. PTX released from the stent was mostly distributed in the rabbit rectum in contact with it. The biosafety of the colorectal stent was evaluated using blood tests, biochemical analysis, anatomical observation, and pathological analysis. The anti-tumor effect of the stent was also evaluated by endoscopy, anatomical observation, and pathological and immunohistochemical analyses in rabbits with orthotopic CRC. The results demonstrate that the optimized colorectal stents have effective anti-migration ability and anti-tumor effects with good biosafety. STATEMENT OF SIGNIFICANCE: In order to overcome the most common disadvantages of migration and re-obstruction of colorectal stents clinically, a colorectal stent composed of a structure-optimized nitinol stent and a tubular film including an inner layer of EVA and a segmental outer layer of EVA with PTX was put forward in this study. The optimized nitinol stent had a structure of one middle segment in hook-pattern and two end segments in cross-pattern with two studs on each end in staggered arrangement. The resulting colorectal stent has been proved with good anti-migration ability, anti-tumor effects, and biosafety in vivo, which provides a safe and effective potential treatment modality for patients with colorectal cancer.
Collapse
|
11
|
Ribeiro N, Farinha PF, Pinho JO, Luiz H, Mészáros JP, Galvão AM, Costa Pessoa J, Enyedy ÉA, Reis CP, Correia I, Gaspar MM. Metal Coordination and Biological Screening of a Schiff Base Derived from 8-Hydroxyquinoline and Benzothiazole. Pharmaceutics 2022; 14:pharmaceutics14122583. [PMID: 36559078 PMCID: PMC9785144 DOI: 10.3390/pharmaceutics14122583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Designing new metallodrugs for anticancer therapy is a driving force in the scientific community. Aiming to contribute to this field, we hereby report the development of a Schiff base (H2L) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with 2-hydrazinobenzothiazole and its complexation with transition metal ions. All compounds were characterised by analytical and spectroscopic techniques, which disclosed their structure: [Cu(HL)Cl], [Cu(HL)2], [Ni(HL)(acetate)], [Ni(HL)2], [Ru(HL)Cl(DMSO)], [VO(HL)2] and [Fe(HL)2Cl(H2O)]. Different binding modes were proposed, showing the ligand’s coordination versatility. The ligand proton dissociation constants were determined, and the tested compounds showed high lipophilicity and light sensitivity. The stability of all complexes in aqueous media and their ability to bind to albumin were screened. Based on an antiproliferative in vitro screening, [Ni(HL)(acetate)] and [Ru(HL)Cl(DMSO)] were selected for further studies aiming to investigate their mechanisms of action and therapeutic potential towards colon cancer. The complexes displayed IC50 < 21 μM towards murine (CT-26) and human (HCT-116) colon cancer cell lines. Importantly, both complexes exhibited superior antiproliferative properties compared to the clinically approved 5-fluorouracil. [Ni(HL)(acetate)] induced cell cycle arrest in S phase in CT-26 cells. For [Ru(HL)Cl(DMSO)] this effect was observed in both colon cancer cell lines. Additionally, both compounds significantly inhibited cell migration particularly in the human colon cancer cell line, HCT-116. Overall, the therapeutic potential of both metal complexes was demonstrated.
Collapse
Affiliation(s)
- Nádia Ribeiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Pedro F. Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jacinta O. Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Hugo Luiz
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - János P. Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Adelino M. Galvão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Éva A. Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- Correspondence: (I.C.); (M.M.G.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (I.C.); (M.M.G.)
| |
Collapse
|
12
|
Abbasnezhad N, Zirak N, Champmartin S, Shirinbayan M, Bakir F. An Overview of In Vitro Drug Release Methods for Drug-Eluting Stents. Polymers (Basel) 2022; 14:2751. [PMID: 35808798 PMCID: PMC9269075 DOI: 10.3390/polym14132751] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/08/2023] Open
Abstract
The drug release profile of drug-eluting stents (DESs) is affected by a number of factors, including the formulation, design, and physicochemical properties of the utilized material. DES has been around for twenty years and despite its widespread clinical use, and efficacy in lowering the rate of target lesion restenosis, it still requires additional development to reduce side effects and provide long-term clinical stability. Unfortunately, for analyzing these implants, there is still no globally accepted in vitro test method. This is owing to the stent's complexity as well as the dynamic arterial compartments of the blood and vascular wall. The former is the source of numerous biological, chemical, and physical mechanisms that are more commonly observed in tissue, lumen, and DES. As a result, universalizing bio-relevant apparatus, suitable for liberation testing of such complex implants is difficult. This article aims to provide a comprehensive review of the methods used for in vitro release testing of DESs. Aspects related to the correlation of the release profiles in the cases of in vitro and in vivo are also addressed.
Collapse
Affiliation(s)
- Navideh Abbasnezhad
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Nader Zirak
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Stéphane Champmartin
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
| | - Mohammadali Shirinbayan
- Arts et Métiers Institute of Technology, CNAM, PIMM, HESAM University, F-75013 Paris, France;
| | - Farid Bakir
- Arts et Métiers Institute of Technology, CNAM, LIFSE, HESAM University, F-75013 Paris, France; (N.Z.); (S.C.)
| |
Collapse
|
13
|
Feng Y, Chen Y, Chen Y, He X, Khan Y, Hu H, Lan P, Li Y, Wang X, Li G, Kaplan D. Intestinal stents: Structure, functionalization and advanced engineering innovation. BIOMATERIALS ADVANCES 2022; 137:212810. [PMID: 35929235 DOI: 10.1016/j.bioadv.2022.212810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Intestinal stents are a palliative treatment option that solves many shortcomings of traditional surgeries for cancer-induced intestinal obstructions. The present review provides an overview of the incidence, clinical manifestations and limitations in the treatment of intestinal cancers. The paper also discusses material property requirements, indications, complications and the future of stent-assisted therapy. The advantages and disadvantages of different materials and processing techniques for intestinal stents are reviewed along with new stent treatment combinations for colorectal cancer. Challenges that require further cooperative studies are also detailed. The future development of intestinal stents will depend on innovation in material designs as well as the utilization of multi-functional strategies and innovative engineering solutions.
Collapse
Affiliation(s)
- Yusheng Feng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yufeng Chen
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xiaowen He
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yousef Khan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Hong Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ping Lan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
14
|
Hasanin MS, El-Sakhawy M, Ahmed HY, Kamel S. Hydroxypropyl methylcellulose/graphene oxide composite as drug carrier system for5-Fluorouracil. Biotechnol J 2021; 17:e2100183. [PMID: 34499787 DOI: 10.1002/biot.202100183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022]
Abstract
AIM This study aims to prepare green nanocomposite (HPMC/5-FL@GO) from the most biocompatible materials, hydroxypropyl methylcellulose (HPMC) and graphene oxide (GO), to enhance the drug activity of immobilized 5- Fluorouracil (5-FU) with decreasing the side effect of long-run treatment protocols with highly efficient drug-drug activity. METHOD AND RESULTS Different samples were characterized by ATR-FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Thermogravimetric analysis (TGA), and dynamic light scattering (DLS) along with cytotoxicity and anticancer study. A homogenous and compatible nanocomposite structure with a homogenous drug distribution was confirmed. The results suggested that the prepared nanocomposite has a low cytotoxicity effect against normal Vero cell lines compared with 5-FU. The antitumor activities of the same nanocomposite (20.4 and 74.3 μg/ml on A549 and HepG-2) were lower than that of 5-FU (54.1and 103 μg/ml on A549 and HepG-2). CONCLUSION AND IMPLICATIONS According to the attained results, the HPMC/5-FL@GO can be expected to be widely applied in a biomedical application such as cancer therapy with the unique biocompatible to human cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., Dokki Giza, P.O. 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., Dokki Giza, P.O. 12622, Egypt
| | - Hanaa Y Ahmed
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Samir Kamel
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str., Dokki Giza, P.O. 12622, Egypt
| |
Collapse
|
15
|
Arafat M, Song Y, Brewer K, Fouladian P, Parikh A, Albrecht H, Blencowe A, Garg S. Pharmaceutical Development of 5-Fluorouracil-Eluting Stents for the Potential Treatment of Gastrointestinal Cancers and Related Obstructions. Drug Des Devel Ther 2021; 15:1495-1507. [PMID: 33859473 PMCID: PMC8043784 DOI: 10.2147/dddt.s299401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Drug-eluting gastrointestinal (GI) stents are emerging as promising platforms for the treatment of GI cancers and provide the combined advantages of mechanical support to prevent lumen occlusion and as a reservoir for localized drug delivery to tumors. Therefore, in this work we present a detailed quality assurance study of 5-fluorouracil (5FU) drug-eluting stents (DESs) as potential candidates for the treatment of obstructive GI cancers. METHODS The 5FU DESs were fabricated via a simple two-step sequential dip-coating process of commercial GI self-expanding nitinol stents with a 5FU-loaded polyurethane basecoat and a drug-free protective poly(ethylene-co-vinyl acetate) topcoat. The drug loading, content uniformity and drug stability were determined using a validated high-performance liquid chromatography (HPLC) method, which is also recommended in the United States Pharmacopeia. In vitro drug release studies were performed in phosphate buffered saline to determine the drug releasing properties of the two 5FU-loaded stents. Gas chromatography (GC) and HPLC were employed to determine total residual tetrahydrofuran and N,N-dimethylformamide in the stents remaining from the manufacturing process. Sterilization of the stents was performed using gamma radiation and stability testing was carried out for 3 months. RESULTS The drug loading analysis revealed excellent uniformity in the distribution of 5FU between and within individual stents. Determination of drug stability in the biorelevant release media confirmed that 5FU remains stable over 100 d. In vitro drug release studies from the stents revealed sustained release of 5FU across two different time scales (161 and 30 d), and mathematical modeling of drug release profiles revealed a diffusion-controlled mechanism for the sustained 5FU release. GC and HPLC analysis revealed that the daily residual solvent leached from the stents was below the United States (US) Food and Drug Administration (FDA) guidelines, and therefore, unlikely to cause localized/systemic toxicities. Sterilization of the stents with gamma radiation and accelerated stability tests over a period of 3 months revealed no significant effect on the stability or in vitro release of 5FU. CONCLUSION Our results demonstrate that the 5FU DESs meet relevant quality standards and display favourable drug release characteristics for the potential treatment of GI cancers and related obstructions.
Collapse
Affiliation(s)
- Mohammad Arafat
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kyle Brewer
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Paris Fouladian
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Ankit Parikh
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Hugo Albrecht
- Drug Discovery and Development Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
16
|
Fouladian P, Jin Q, Arafat M, Song Y, Guo X, Blencowe A, Garg S. Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer. Pharmaceuticals (Basel) 2021; 14:ph14040311. [PMID: 33915787 PMCID: PMC8067330 DOI: 10.3390/ph14040311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
For several decades, self-expanding metal stents (SEMSs) have shown significant clinical success in the palliation of obstructive metastatic oesophageal cancer. However, these conventional oesophageal stents can suffer from stent blockage caused by malignant tumour cell growth. To overcome this challenge, there is growing interest in drug-releasing stents that, in addition to palliation, provide a sustained and localized release of anticancer drugs to minimise tumour growth. Therefore, in this study we prepared and evaluated an oesophageal stent-based drug delivery platform to provide the sustained release of docetaxel (DTX) for the treatment of oesophageal cancer-related obstructions. The DTX-loaded oesophageal stents were fabricated via dip-coating of bare nitinol stents with DTX-polyurethane (PU) solutions to provide PU coated stents with DTX loadings of 1.92 and 2.79% w/w. Mechanical testing of the DTX-PU coated stents revealed that an increase in the drug loading resulted in a reduction in the ultimate tensile strength, toughness and Young’s modulus. In vitro release studies showed a sustained release of DTX, with ~80–90% released over a period of 33 days. While the DTX-loaded stents exhibited good stability to gamma radiation sterilisation, UV sterilisation or accelerated storage at elevated temperatures (40 °C) resulted in significant DTX degradation. Cell proliferation, apoptosis and Western blotting assays revealed that the DTX released from the stents had comparable anticancer activity to pure DTX against oesophageal cancer cells (KYSE-30). This research demonstrates that the dip-coating technique can be considered as a promising approach for the fabrication of drug-eluting stents (DESs) for oesophageal cancer treatment.
Collapse
Affiliation(s)
- Paris Fouladian
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
| | - Qiuyang Jin
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
| | - Mohammad Arafat
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
| | - Yunmei Song
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
| | - Xiuli Guo
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
- Correspondence: (X.G.); (A.B.); (S.G.)
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Correspondence: (X.G.); (A.B.); (S.G.)
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.F.); (M.A.); (Y.S.)
- Correspondence: (X.G.); (A.B.); (S.G.)
| |
Collapse
|