1
|
Cruz-Garza JG, Bhenderu LS, Taghlabi KM, Frazee KP, Guerrero JR, Hogan MK, Humes F, Rostomily RC, Horner PJ, Faraji AH. Electrokinetic convection-enhanced delivery for infusion into the brain from a hydrogel reservoir. Commun Biol 2024; 7:869. [PMID: 39020197 PMCID: PMC11255224 DOI: 10.1038/s42003-024-06404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/31/2024] [Indexed: 07/19/2024] Open
Abstract
Electrokinetic convection-enhanced delivery (ECED) utilizes an external electric field to drive the delivery of molecules and bioactive substances to local regions of the brain through electroosmosis and electrophoresis, without the need for an applied pressure. We characterize the implementation of ECED to direct a neutrally charged fluorophore (3 kDa) from a doped biocompatible acrylic acid/acrylamide hydrogel placed on the cortical surface. We compare fluorophore infusion profiles using ECED (time = 30 min, current = 50 µA) and diffusion-only control trials, for ex vivo (N = 18) and in vivo (N = 12) experiments. The linear intensity profile of infusion to the brain is significantly higher in ECED compared to control trials, both for in vivo and ex vivo. The linear distance of infusion, area of infusion, and the displacement of peak fluorescence intensity along the direction of infusion in ECED trials compared to control trials are significantly larger for in vivo trials, but not for ex vivo trials. These results demonstrate the effectiveness of ECED to direct a solute from a surface hydrogel towards inside the brain parenchyma based predominantly on the electroosmotic vector.
Collapse
Affiliation(s)
- Jesus G Cruz-Garza
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
| | - Lokeshwar S Bhenderu
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
- Texas A&M University College of Medicine, Houston, TX, USA.
| | - Khaled M Taghlabi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
| | - Kendall P Frazee
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- School of Engineering, Texas A&M, College Station, TX, USA
| | - Jaime R Guerrero
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Matthew K Hogan
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Frances Humes
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Philip J Horner
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - Amir H Faraji
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX, USA.
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
2
|
Haage V, Tuddenham JF, Comandante-Lou N, Bautista A, Monzel A, Chiu R, Fujita M, Garcia FG, Bhattarai P, Patel R, Buonfiglioli A, Idiarte J, Herman M, Rinderspacher A, Mela A, Zhao W, Argenziano MG, Furnari JL, Banu MA, Landry DW, Bruce JN, Canoll P, Zhang Y, Nuriel T, Kizil C, Sproul AA, de Witte LD, Sims PA, Menon V, Picard M, De Jager PL. A pharmacological toolkit for human microglia identifies Topoisomerase I inhibitors as immunomodulators for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579103. [PMID: 38370689 PMCID: PMC10871172 DOI: 10.1101/2024.02.06.579103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.
Collapse
Affiliation(s)
- Verena Haage
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - John F. Tuddenham
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Natacha Comandante-Lou
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alex Bautista
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Anna Monzel
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Rebecca Chiu
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Frankie G. Garcia
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Prabesh Bhattarai
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Ronak Patel
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Alice Buonfiglioli
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Juan Idiarte
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Mathieu Herman
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | | | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald W. Landry
- Department of Medicine, Columbia University, New York, NY 10032, United States
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Tal Nuriel
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Caghan Kizil
- Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Andrew A. Sproul
- Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Lotje D. de Witte
- Department of Psychiatry, Icahn School of Medicine, 1460 Madison Avenue, New York, NY, 10029, United States
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Neuroimmunology Division, Department of Neurology and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, United States
| |
Collapse
|
3
|
Pinheiro Lopes B, O’Neill L, Bourke P, Boehm D. Combined Effect of Plasma-Activated Water and Topotecan in Glioblastoma Cells. Cancers (Basel) 2023; 15:4858. [PMID: 37835552 PMCID: PMC10571909 DOI: 10.3390/cancers15194858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The increase in cancer diagnoses and cancer deaths, severe side effects of existing treatments and resistance to traditional treatments have generated a need for new anticancer treatments. Glioblastoma multiforme (GBM) is the most common, malignant and aggressive brain cancer. Despite many innovations regarding GBM treatment, the final outcome is still very poor, making it necessary to develop new therapeutic approaches. Cold atmospheric plasma (CAP) as well as plasma-activated liquids (PAL) are being studied as new possible approaches against cancer. The anticancer activity of PAL such as "plasma-activated water" (PAW) is dependent on the reactive chemical compounds present in the solution. Possible combinatory effects with conventional therapies, such as chemotherapeutics, may expand the potential of PAL for cancer treatment. We aim to explore the therapeutic properties of a combination of PAW and topotecan (TPT), an antineoplastic agent with major cytotoxic effects during the S phase of the cell cycle, on a GBM cancer cell line (U-251mg). Combined treatments with PAW and TPT showed a reduction in the metabolic activity and cell mass, an increase in apoptotic cell death and a reduction in the long-term survival. Single applications of PAW+TPT treatments showed a cytotoxic effect in the short term and an antiproliferative effect in the long term, warranting future exploration of combining PAW with chemotherapeutic agents as new therapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Pinheiro Lopes
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
- Environmental Sustainability and Health Institute and School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| | - Liam O’Neill
- TheraDep Ltd., QUESTUM Innovation Centre, Limerick Institute of Technology, E91 V329 Clonmel, Ireland;
| | - Paula Bourke
- Environmental Sustainability and Health Institute and School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
- Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Daniela Boehm
- School of Chemical and Bioprocess Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
- Environmental Sustainability and Health Institute and School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
4
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
5
|
Sethi B, Kumar V, Mahato K, Coulter DW, Mahato RI. Recent advances in drug delivery and targeting to the brain. J Control Release 2022; 350:668-687. [PMID: 36057395 PMCID: PMC9884093 DOI: 10.1016/j.jconrel.2022.08.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 02/01/2023]
Abstract
Our body keeps separating the toxic chemicals in the blood from the brain. A significant number of drugs do not enter the central nervous system (CNS) due to the blood-brain barrier (BBB). Certain diseases, such as tumor growth and stroke, are known to increase the permeability of the BBB. However, the heterogeneity of this permeation makes it difficult and unpredictable to transport drugs to the brain. In recent years, research has been directed toward increasing drug penetration inside the brain, and nanomedicine has emerged as a promising approach. Active targeting requires one or more specific ligands on the surface of nanoparticles (NPs), which brain endothelial cells (ECs) recognize, allowing controlled drug delivery compared to conventional targeting strategies. This review highlights the mechanistic insights about different cell types contributing to the development and maintenance of the BBB and summarizes the recent advancement in brain-specific NPs for different pathological conditions. Furthermore, fundamental properties of brain-targeted NPs will be discussed, and the standard lesion features classified by neurological pathology are summarized.
Collapse
Affiliation(s)
- Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Kalika Mahato
- College of Medicine, University of Nebraska Medical Center, Omaha NE 68198, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha NE 68198, USA.
| |
Collapse
|
6
|
Zhou YS, Wang W, Chen N, Wang LC, Huang JB. Research progress of anti-glioma chemotherapeutic drugs (Review). Oncol Rep 2022; 47:101. [PMID: 35362540 PMCID: PMC8990335 DOI: 10.3892/or.2022.8312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common primary intracranial malignancy in the central nervous system. At present, the most important treatment option is surgical resection of the tumor combined with radiotherapy and chemotherapy. The principle of operation is to remove the tumor to the maximal extent on the basis of preserving brain function. However, prominent invasive and infiltrative proliferation of glioma tumor cells into the surrounding normal tissues frequently reduces the efficacy of treatment. This in turn worsens the prognosis, because the tumor cannot be completely removed, which can readily relapse. Chemotherapeutic agents when applied individually have demonstrated limited efficacy for the treatment of glioma. However, multiple different chemotherapeutic agents can be used in combination with other treatment modalities to improve the efficacy while circumventing systemic toxicity and drug resistance. Therefore, it is pivotal to unravel the inhibitory mechanism mediated by the different chemotherapeutic drugs on glioma cells in preclinical studies. The aim of the present review is to provide a summary for understanding the effects of different chemotherapeutic drugs in glioma, in addition to providing a reference for the preclinical research into novel chemotherapeutic agents for future clinical application.
Collapse
Affiliation(s)
- Yi-Shu Zhou
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Wei Wang
- Department of Radiology and Research Institute for Translation Medicine on Molecular Function and Artificial Intelligence Imaging, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Na Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
7
|
Aquilina K, Chakrapani A, Carr L, Kurian MA, Hargrave D. Convection-Enhanced Delivery in Children: Techniques and Applications. Adv Tech Stand Neurosurg 2022; 45:199-228. [PMID: 35976451 DOI: 10.1007/978-3-030-99166-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since its first description in 1994, convection-enhanced delivery (CED) has become a reliable method of administering drugs directly into the brain parenchyma. More predictable and effective than simple diffusion, CED bypasses the challenging boundary of the blood brain barrier, which has frustrated many attempts at delivering large molecules or polymers into the brain parenchyma. Although most of the clinical work with CED has been carried out on adults with incurable neoplasms, principally glioblastoma multiforme, an increasing number of studies have recognized its potential for paediatric applications, which now include treatment of currently incurable brain tumours such as diffuse intrinsic pontine glioma (DIPG), as well as metabolic and neurotransmitter diseases. The roadmap for the development of hardware and use of pharmacological agents in CED has been well-established, and some neurosurgical centres throughout the world have successfully undertaken clinical trials, admittedly mostly early phase, on the basis of in vitro, small animal and large animal pre-clinical foundations. However, the clinical efficacy of CED, although theoretically logical, has yet to be unequivocally demonstrated in a clinical trial; this applies particularly to neuro-oncology.This review aims to provide a broad description of the current knowledge of CED as applied to children. It reviews published studies of paediatric CED in the context of its wider history and developments and underlines the challenges related to the development of hardware, the selection of pharmacological agents, and gene therapy. It also reviews the difficulties related to the development of clinical trials involving CED and looks towards its potential disease-modifying opportunities in the future.
Collapse
Affiliation(s)
- K Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London, UK.
| | - A Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital, London, UK
| | - L Carr
- Department of Neurology and Neurodisability, Great Ormond Street Hospital, London, UK
| | - M A Kurian
- Department of Neurology and Neurodisability, Great Ormond Street Hospital, London, UK
- Neurogenetics Group, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL-Great Ormond Street Institute of Child Health, London, UK
| | - D Hargrave
- Cancer Group, UCL-Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
8
|
Zagotto G, Bortoli M. Drug Design: Where We Are and Future Prospects. Molecules 2021; 26:7061. [PMID: 34834152 PMCID: PMC8622624 DOI: 10.3390/molecules26227061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Medicinal chemistry is facing new challenges in approaching precision medicine. Several powerful new tools or improvements of already used tools are now available to medicinal chemists to help in the process of drug discovery, from a hit molecule to a clinically used drug. Among the new tools, the possibility of considering folding intermediates or the catalytic process of a protein as a target for discovering new hits has emerged. In addition, machine learning is a new valuable approach helping medicinal chemists to discover new hits. Other abilities, ranging from the better understanding of the time evolution of biochemical processes to the comprehension of the biological meaning of the data originated from genetic analyses, are on their way to progress further in the drug discovery field toward improved patient care. In this sense, the new approaches to the delivery of drugs targeted to the central nervous system, together with the advancements in understanding the metabolic pathways for a growing number of drugs and relating them to the genetic characteristics of patients, constitute important progress in the field.
Collapse
Affiliation(s)
- Giuseppe Zagotto
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marco Bortoli
- Institute of Computational Chemistry and Catalysis (IQCC) and Department of Chemistry, Faculty of Sciences, University of Girona, C/M. A. Capmany 69, 17003 Girona, Spain;
| |
Collapse
|
9
|
Kang JH, Desjardins A. Convection-enhanced delivery for high-grade glioma. Neurooncol Pract 2021; 9:24-34. [DOI: 10.1093/nop/npab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Glioblastoma (GBM) is the most common adult primary malignant brain tumor and is associated with a dire prognosis. Despite multi-modality therapies of surgery, radiation, and chemotherapy, its 5-year survival rate is 6.8%. The presence of the blood-brain barrier (BBB) is one factor that has made GBM difficult to treat. Convection-enhanced delivery (CED) is a modality that bypasses the BBB, which allows the intracranial delivery of therapies that would not otherwise cross the BBB and avoids systemic toxicities. This review will summarize prior and ongoing studies and highlights practical considerations related to clinical care to aid providers caring for a high-grade glioma patient being treated with CED. Although not the main scope of this paper, this review also touches upon relevant technical considerations of using CED, an area still under much development.
Collapse
Affiliation(s)
- Jennifer H Kang
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
10
|
Molotkov A, Carberry P, Dolan MA, Joseph S, Idumonyi S, Oya S, Castrillon J, Konofagou EE, Doubrovin M, Lesser GJ, Zanderigo F, Mintz A. Real-Time Positron Emission Tomography Evaluation of Topotecan Brain Kinetics after Ultrasound-Mediated Blood-Brain Barrier Permeability. Pharmaceutics 2021; 13:405. [PMID: 33803856 PMCID: PMC8003157 DOI: 10.3390/pharmaceutics13030405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary adult brain malignancy with an extremely poor prognosis and a median survival of fewer than two years. A key reason for this high mortality is that the blood-brain barrier (BBB) significantly restricts systemically delivered therapeutics to brain tumors. High-intensity focused ultrasound (HIFU) with microbubbles is a methodology being used in clinical trials to noninvasively permeabilize the BBB for systemic therapeutic delivery to GBM. Topotecan is a topoisomerase inhibitor used as a chemotherapeutic agent to treat ovarian and small cell lung cancer. Studies have suggested that topotecan can cross the BBB and can be used to treat brain metastases. However, pharmacokinetic data demonstrated that topotecan peak concentration in the brain extracellular fluid after systemic injection was ten times lower than in the blood, suggesting less than optimal BBB penetration by topotecan. We hypothesize that HIFU with microbubbles treatment can open the BBB and significantly increase topotecan concentration in the brain. We radiolabeled topotecan with 11C and acquired static and dynamic positron emission tomography (PET) scans to quantify [11C] topotecan uptake in the brains of normal mice and mice after HIFU treatment. We found that HIFU treatments significantly increased [11C] topotecan brain uptake. Moreover, kinetic analysis of the [11C] topotecan dynamic PET data demonstrated a substantial increase in [11C] topotecan volume of distribution in the brain. Furthermore, we found a decrease in [11C] topotecan brain clearance, confirming the potential of HIFU to aid in the delivery of topotecan through the BBB. This opens the potential clinical application of [11C] topotecan as a tool to predict topotecan loco-regional brain concentration in patients with GBMs undergoing experimental HIFU treatments.
Collapse
Affiliation(s)
- Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Patrick Carberry
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Martin A. Dolan
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Simon Joseph
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Sidney Idumonyi
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Shunichi Oya
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - John Castrillon
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA;
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| | - Glenn J. Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA;
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA;
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032, USA; (A.M.); (P.C.); (M.A.D.); (S.J.); (S.I.); (S.O.); (J.C.); (M.D.)
| |
Collapse
|