1
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Diogo P, Amparo F Faustino M, Palma PJ, Rai A, Graça P M S Neves M, Miguel Santos J. May carriers at nanoscale improve the Endodontic's future? Adv Drug Deliv Rev 2023; 195:114731. [PMID: 36787865 DOI: 10.1016/j.addr.2023.114731] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Nanocarriers (NCs) are dynamic nanovehicles used to transport bioactive derivatives like therapeutical formulations, drugs and/or dyes. The current review assists in understanding the mechanism of action of several recent developed NCs with antimicrobial purposes. Here, nine NCs varieties are portrayed with focus on nineteen approaches that are fulfil described based on outcomes obtained from in vitro antimicrobial assays. All approaches have previously been verified and we underline the biochemical challenges of all NCs, expecting that the present data may encourage the application of NCs in endodontic antimicrobial basic research. Methodological limitations and the evident base gaps made not possible to draw a definite conclusion about the best NCs for achieving efficient antimicrobial outcomes in endodontic studies. Due to the lack of pre-clinical trials and the scarce number of clinical trials in this emergent area, there is still much room for improvement on several fronts.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Akhilesh Rai
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | | | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine and Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Mitchell J, Lo KWH. Small molecule-mediated regenerative engineering for craniofacial and dentoalveolar bone. Front Bioeng Biotechnol 2022; 10:1003936. [PMID: 36406208 PMCID: PMC9667056 DOI: 10.3389/fbioe.2022.1003936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
The comprehensive reconstruction of extensive craniofacial and dentoalveolar defects remains a major clinical challenge to this day, especially in complex medical cases involving cancer, cranioplasty, and traumatic injury. Currently, osteogenic small molecule-based compounds have been explored extensively to repair and regenerate bone tissue because of their unique advantages. Over the past few years, a number of small molecules with the potential of craniofacial and periodontal bone tissue regeneration have been reported in literature. In this review, we discuss current progress using small molecules to regulate cranial and periodontal bone regeneration. Future directions of craniofacial bone regenerative engineering using the small molecule-based compounds will be discussed as well.
Collapse
Affiliation(s)
- Juan Mitchell
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kevin W. H. Lo
- School of Medicine, Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, United States
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT, United States
- School of Engineering, Institute of Materials Science (IMS), University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Rincón-López J, Martínez-Aguilera M, Guadarrama P, Juarez-Moreno K, Rojas-Aguirre Y. Exploring In Vitro Biological Cellular Responses of Pegylated β-Cyclodextrins. Molecules 2022; 27:molecules27093026. [PMID: 35566378 PMCID: PMC9101635 DOI: 10.3390/molecules27093026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
βCDPEG5 and βCDPEG2 are two derivatives comprising seven PEG linear chains of 5 and 2 kDa, respectively, conjugated to βCD. As βCDPEGs display different physicochemical properties than their precursors, they could also trigger distinct cellular responses. To investigate the biological behavior of βCDPEGs in comparison to their parent compounds, we performed broad toxicological assays on RAW 264.7 macrophages, MC3T3-E1 osteoblasts, and MDCK cells. By analyzing ROS and NO2− overproduction in macrophages, we found that βCDPEGs induced a moderate stress response without affecting cell viability. Although MC3T3-E1 osteoblasts were more sensitive than MDCK cells to βCDPEGs and the parent compounds, a similar pattern was observed: the effect of βCDPEG5 on cell viability and cell cycle progression was larger than that of βCDPEG2; PEG2 affected cell viability and cell cycle more than βCDPEG2; cell post-treatment recovery was favorable in all cases, and the compounds had similar behaviors regarding ROS generation. The effect on MDCK cell migration followed a similar pattern. In contrast, for osteoblasts, the interference of βCDPEG5 with cell migration was smaller than that of βCDPEG2; likewise, the effect of PEG2 was shorter than its conjugate. Overall, the covalent conjugation of βCD and PEGs, particularly to yield βCDPEG2, improved the biocompatibility profile, evidencing that a favorable biological response can be tuned through a thoughtful combination of materials. Moreover, this is the first time that an in vitro evaluation of βCD and PEG has been presented for MC3T3-E1 and MDCK cells, thus providing valuable knowledge for designing biocompatible nanomaterials constructed from βCD and PEGs.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Miguelina Martínez-Aguilera
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Patricia Guadarrama
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, (CFATA-UNAM), Blvd. Juriquilla #3001 Col. Jurica La Mesa CP, Querétaro 76230, Mexico
- Correspondence: (K.J.-M.); (Y.R.-A.); Tel.: +52-(442)-192-6128 (ext. 140) (K.J.-M.); +52-5556-2266-66 (ext. 45675) (Y.R.-A.)
| | - Yareli Rojas-Aguirre
- Laboratorio de Materiales Supramoleculares (SupraMatLab), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Coyoacán 04510, Mexico; (J.R.-L.); (M.M.-A.); (P.G.)
- Correspondence: (K.J.-M.); (Y.R.-A.); Tel.: +52-(442)-192-6128 (ext. 140) (K.J.-M.); +52-5556-2266-66 (ext. 45675) (Y.R.-A.)
| |
Collapse
|
5
|
Kobayashi H, Takeuchi K, Morinaga Y, Honda H, Yamamoto M, Odanaka Y, Inagaki M. Inter-Spin Interactions of 1D Chains of Different-Sized Nitroxide Radicals Incorporated in the Organic 1D Nanochannels of Tris( o-phenylenedioxy)cyclotriphosphazene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirokazu Kobayashi
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan
| | - Kanae Takeuchi
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40, Sakura-jo-sui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Yuka Morinaga
- Department of Chemistry, College of Humanities and Sciences, Nihon University, 3-25-40, Sakura-jo-sui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Hidehiko Honda
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan
| | - Masato Yamamoto
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan
| | - Yuki Odanaka
- Department of Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Showa University, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masahiro Inagaki
- Faculty of Arts and Sciences at Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan
| |
Collapse
|
6
|
Development of oral curcumin based on pH-responsive transmembrane peptide-cyclodextrin derivative nanoparticles for hepatoma. Carbohydr Polym 2022; 277:118892. [PMID: 34893294 DOI: 10.1016/j.carbpol.2021.118892] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
Herein, a pH-responsive cyclodextrin derivative (R6H4-CMβCD) with cell-penetrating ability was successfully synthesized, and curcumin-loaded nanoparticles (R6H4-CMβCD@CUR NPs, RCCNPs) were developed to improve its efficacy in hepatoma. RCCNPs could improve the cell uptake compared with CMβCD@CUR NPs (CCNPs) and were internalized into cells mainly through endocytosis mediated by reticulin and macropinocytosis. Furthermore, the accumulation of RCCNPs in hepatoma cells at pH 6.4 was higher than that at pH 7.4, indicating a pH-responsive uptake. Additionally, RCCNPs could escape from the lysosomes via the "proton sponge effect", and a high apoptosis rate was detected. Importantly, in vivo experiments revealed that orally administered RCCNPs could exert excellent anti-cancer effects in tumor-bearing mice. Hematoxylin-eosin staining did not show significant histological changes in the major organs. Thus, our findings indicate the potential of R6H4-CMβCD as a nanopharmaceutical material, and RCCNPs as an effective delivery system for oral curcumin in cancer management.
Collapse
|
7
|
Studies of the Formation and Stability of Ezetimibe-Cyclodextrin Inclusion Complexes. Int J Mol Sci 2021; 23:ijms23010455. [PMID: 35008881 PMCID: PMC8745117 DOI: 10.3390/ijms23010455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
In the presented studies, the interactions between ezetimibe (EZE) and selected cyclodextrins were investigated. α-Cyclodextrin (αCD), β-cyclodextrin (βCD) and its modified derivatives, hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobutylether-β-cyclodextrin (SBEβCD), were selected for the research. Measurements were carried out using calorimetric and spectroscopic methods. Additionally, the Hirshfeld surface and biochemical analysis were achieved. As a result of the study, the inclusion complexes with 1:1 stoichiometry were obtained. The most stable are the complexes of β-cyclodextrin and its derivatives. The comparison of βCD with its derivatives shows that the modifications have an affect on the formation of more durable and stable complexes.
Collapse
|
8
|
Multivalent effects of heptamannosylated β-cyclodextrins on macrophage polarization to accelerate wound healing. Colloids Surf B Biointerfaces 2021; 208:112071. [PMID: 34461486 DOI: 10.1016/j.colsurfb.2021.112071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023]
Abstract
Macrophages have high plasticity and heterogeneity, and can suppress or mediate inflammation, depending on their cytokine secretion and phenotype. Regulating macrophage polarization into its M2 phenotype has a remarkable effect on inflammatory inhibition, inducing the regeneration of injured tissues. Here, we synthesized two heptamannosylated β-cyclodextrin derivatives (CD-Man7 and C3-CD-Man7) and demonstrated that their multivalent mannose ligands could induce M2 macrophage polarization to accelerate wound healing. Unlike hydrophilic CD-Man7, amphiphilic C3-CD-Man7 can self-assemble to form nanoparticles (CD-Man-NPs) in aqueous solution. Further, in vitro results confirmed that multivalent mannose ligands of either CD-Man7 or CD-Man-NPs stimulated RAW264.7 macrophages to differentiate into the M2 phenotype, which promoted fibroblast migration via a paracrine mechanism. In vivo results confirmed that both CD-Man7 and CD-Man-NPs reduced the inflammatory response in wound tissue and accelerated wound healing. The present study demonstrates multivalent effects of CD-Man7 and CD-Man-NPs on M2 macrophage polarization, indicating the therapeutic potential of these β-cyclodextrin glycoconjugates in the treatment of inflammatory diseases and wound healing.
Collapse
|
9
|
Shah AA, Shah A, Lewis S, Ghate V, Saklani R, Narayana Kalkura S, Baby C, Singh PK, Nayak Y, Chourasia MK. Cyclodextrin based bone regenerative inclusion complex for resveratrol in postmenopausal osteoporosis. Eur J Pharm Biopharm 2021; 167:127-139. [PMID: 34329710 DOI: 10.1016/j.ejpb.2021.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Recent preclinical studies have shown that resveratrol (RSV), is a promising remedy for osteoporosis owing to its estrogenic, anti-inflammatory, and antioxidant properties. However, RSV has met limited success due to its poor oral bioavailability and inefficient systemic delivery. In this study, we prepared the inclusion complex of RSV with sulfo-butyl ether β-cyclodextrin (SBE-β-CD) to enhance the aqueous solubility of RSV. The in-silico docking studies and Physico-chemical characterization assays were performed to understand the interaction of RSV inside the SBE-β-CD cavity. The in vivo safety assessment of RSV-SBE-β-CD inclusion complex (R-CDIC) was performed in healthy Wistar rats. The efficacy of the inclusion complex against postmenopausal osteoporosis was further investigated in ovariectomized (OVX) rat model. The alteration in the bone micro-architectural structure was evaluated by microcomputed tomographic scanning, serum biochemical estimations, biomechanical strength and histopathological investigation. Administration of RSV-SBE-β-CD inclusion complex was found to be safe and significantly improved micro-architectural deterioration induced by estrogen withdrawal. Results of bone morphometry and biomechanics study further emboldened the efficacy claim of the RSV-SBE-β-CD complex. Thus, the present study demonstrated the efficacy of the RSV-SBE-β-CD inclusion complex for treating osteolytic degradation in osteoporosis.
Collapse
Affiliation(s)
- Aarti Abhishek Shah
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Abhishek Shah
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Ravi Saklani
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - S Narayana Kalkura
- Crystal Growth Centre, Anna University, Chennai, Tamil Nadu 600025, India
| | - C Baby
- FT-NMR Lab, Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India.
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| |
Collapse
|