1
|
Ma Q, Li W, Wu W, Sun M. Exploring the active ingredients and mechanisms of Liujunzi decoction in treating hepatitis B: a study based on network pharmacology, molecular docking, and molecular dynamics simulations. Comput Methods Biomech Biomed Engin 2024:1-25. [PMID: 39534925 DOI: 10.1080/10255842.2024.2427117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Liujunzi decoction (LJZD) is commonly used to treat hepatitis B virus (HBV), though its active ingredients and mechanisms are not fully known. This study identified core targets and active components of LJZD for treating hepatitis B (HB) through network pharmacology, molecular docking, and molecular dynamics simulation. Screening from databases yielded 533 active components, 2619 targets for LJZD, and 2910 for HB, with 891 intersecting targets. STRING and CytoHubba analyses identified AR and VDR as core targets, with key pathways including PI3K-Akt and MAPK. The findings clarify LJZD's multicomponent, multitarget mechanisms, supporting its clinical application for HB treatment.
Collapse
Affiliation(s)
- Qing Ma
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenying Wu
- Department of Pharmacy, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
3
|
Wang M, Gong J, Rades T, Martins ICB. Amorphization of different furosemide polymorphic forms during ball milling: Tracking solid-to-solid phase transformations. Int J Pharm 2023; 648:123573. [PMID: 37931725 DOI: 10.1016/j.ijpharm.2023.123573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Ball milling is used, not only to reduce the particle size of pharmaceutical powders, but also to induce changes in the physical properties of drugs. In this work we prepared three crystal forms of furosemide (forms Ⅰ, Ⅱ, and Ⅲ) and studied their solid phase transformations during ball milling. Powder X-ray diffraction and modulated differential scanning calorimetry were used to characterize the samples after each milling time on their path to amorphization. Our results show that forms Ⅰ and III directly converted into an amorphous phase, while form Ⅱ first undergoes a polymorphic transition to form Ⅰ, and then gradually loses its crystallinity, finally reaching full amorphousness. During ball milling of forms Ⅰ and Ⅱ, the glass transition temperature (Tg) of the amorphous fraction of the milled material remains almost unchanged at 75 °C and 74 °C, respectively (whilst the amorphous content increases). In contrast, the Tg values of the amorphous fraction of milled form III increase with increasing milling times, from 63 °C to 71 °C, indicating an unexpected phenomenon of amorphous-to-amorphous transformation. The amorphous fraction of milled forms I and II samples presented a longer structural relaxation (i.e., lower molecular mobility) than the amorphous fraction of milled form III samples. Moreover, the structural relaxation time remained the same for the increasing amorphous fraction during milling of forms I and II. In contrast, the structural relaxation times were always shorter for the amorphous fraction of form III, but increased with increasing amorphous content during milling, confirming amorphous-to-amorphous transformation.
Collapse
Affiliation(s)
- Mengwei Wang
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Inês C B Martins
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Kapoor DU, Singh S, Sharma P, Prajapati BG. Amorphization of Low Soluble Drug with Amino Acids to Improve Its Therapeutic Efficacy: a State-of-Art-Review. AAPS PharmSciTech 2023; 24:253. [PMID: 38062314 DOI: 10.1208/s12249-023-02709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Low aqueous solubility of drug candidates is an ongoing challenge and pharmaceutical manufacturers pay close attention to amorphization (AMORP) technology to improve the solubility of drugs that dissolve poorly. Amorphous drug typically exhibits much higher apparent solubility than their crystalline form due to high energy state that enable them to produce a supersaturated state in the gastrointestinal tract and thereby improve bioavailability. The stability and augmented solubility in co-amorphous (COA) formulations is influenced by molecular interactions. COA are excellent carriers-based drug delivery systems for biopharmaceutical classification system (BCS) class II and class IV drugs. The three important critical quality attributes, such as co-formability, physical stability, and dissolution performance, are necessary to illustrate the COA systems. New amorphous-stabilized carriers-based fabrication techniques that improve drug loading and degree of AMORP have been the focus of emerging AMORP technology. Numerous low-molecular-weight compounds, particularly amino acids such as glutamic acid, arginine, isoleucine, leucine, valine, alanine, glycine, etc., have been employed as potential co-formers. The review focus on the prevailing drug AMORP strategies used in pharmaceutical research, including in situ AMORP, COA systems, and mesoporous particle-based methods. Moreover, brief characterization techniques and the application of the different amino acids in stabilization and solubility improvements have been related.
Collapse
Affiliation(s)
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Faculty of Pharmacy, Chiang Mai University, 50200, Chiang Mai, Thailand.
| | - Pratishtha Sharma
- School of Pharmacy, Raffles University, Neemrana, Rajasthan, 301020, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
| |
Collapse
|
5
|
Jadhav S, Bahl D, Stevens LL. Coformer-Dependent Physical Stability in a Series of Naringenin-Based Coamorphous Materials with Caffeine, Theophylline, and Theobromine. Pharm Res 2023; 40:2847-2858. [PMID: 37505378 DOI: 10.1007/s11095-023-03562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE To investigate the production and physical stability of coamorphous materials (CAM) of naringenin (NAR) and coformers-caffeine, theophylline or theobromine (CAF/THY/THE, respectively). We independently assessed the impact of moisture and temperature on the physical stability of CAMs, and transformation products after destabilization were examined. METHODS Neat grinding, liquid assisted grinding and water slurry were selected to prepare multi-component materials with NAR and CAF, THY or THE. The physical stability of CAMs was investigated at 65°C/<10%RH, 21°C/85% RH and 21°C/<10% RH. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were employed to monitor for recrystallization during the stability studies. Glass forming ability of amorphous NAR was assessed to understand CAM formation and physical stability. RESULTS NAR:THY and NAR:THE CAMs showed physical stability for approximately nine months, under 21°C/<10% RH while NAR:CAF CAMs destabilized in 2.5 weeks. All CAMs recrystallized within a week at 65°C/<10%RH, and the physical stability at 21°C/85% RH was in the order of - NAR:THY > NAR:THE > NAR:CAF. NAR:THY produced 1:1 cocrystal under all storage conditions, while NAR:CAF destabilized to a 1:1 cocrystal at high RH but a physical mixture at high temperature. NAR:THE was found to recrystallize as a physical mixture in all conditions. NAR was found to be strong glass, with moderate kinetic fragility and good glass forming ability. CONCLUSION Five naringenin-based multi-component solids were generated in this study: 3 new CAMs, 1 new cocrystal, and 1 previously reported cocrystal. Destabilization of CAMs was found to be exposure specific and coformer dependent.
Collapse
Affiliation(s)
- Sanika Jadhav
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Dherya Bahl
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Lewis L Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Furuishi T, Sato-Hata N, Fukuzawa K, Yonemochi E. Characterization of Co-amorphous Carvedilol-Maleic Acid System Prepared by Solvent Evaporation. Pharm Dev Technol 2023; 28:309-317. [PMID: 36946594 DOI: 10.1080/10837450.2023.2194406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The aim of this study was to enhance the solubility and stability of the water-insoluble drug carvedilol (CAR) with maleic acid (MLE) to create a co-amorphous system by a solvent evaporation method. Phase diagrams of co-amorphous CAR-MLE, constructed from peak height in the Fourier-transform infrared (FTIR) spectra and the glass transition temperature (Tg) from differential scanning calorimetry (DSC) measurements, revealed that the optimal molar ratio of CAR to MLE was 2:1. The FTIR spectra indicated that the secondary amine-derived peak of CAR and the carboxy group-derived peak of MLE disappeared in the CAR:MLE (2:1) co-amorphous system. DSC measurements showed that the endothermic peaks associated with the melting of CAR and MLE disappeared and a Tg at 43 °C was apparent. Furthermore, the solubility of CAR tested using the shaking flask method for 24 h at 37 °C was 1.2 μg/mL, whereas that of the co-amorphous system was approximately three times higher, at 3.5 μg/mL. Finally, the stability was evaluated by powder- X-ray diffraction at 40 °C; no clear diffraction peaks originating from crystals were observed in the amorphous state until after approximately 3 months of storage. These results indicate that co-amorphization of CAR with MLE improved the solubility of CAR while maintaining its stability in an amorphous form.
Collapse
Affiliation(s)
- Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan
| | - Nanami Sato-Hata
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University; 1-6 Yamadaoka, Suita, 565-0871, Osaka Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, 142-8501, Tokyo, Japan
| |
Collapse
|
7
|
Data-Driven Prediction of the Formation of Co-Amorphous Systems. Pharmaceutics 2023; 15:pharmaceutics15020347. [PMID: 36839668 PMCID: PMC9968185 DOI: 10.3390/pharmaceutics15020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Co-amorphous systems (COAMS) have raised increasing interest in the pharmaceutical industry, since they combine the increased solubility and/or faster dissolution of amorphous forms with the stability of crystalline forms. However, the choice of the co-former is critical for the formation of a COAMS. While some models exist to predict the potential formation of COAMS, they often focus on a limited group of compounds. Here, four classes of combinations of an active pharmaceutical ingredient (API) with (1) another API, (2) an amino acid, (3) an organic acid, or (4) another substance were considered. A model using gradient boosting methods was developed to predict the successful formation of COAMS for all four classes. The model was tested on data not seen during training and predicted 15 out of 19 examples correctly. In addition, the model was used to screen for new COAMS in binary systems of two APIs for inhalation therapy, as diseases such as tuberculosis, asthma, and COPD usually require complex multidrug-therapy. Three of these new API-API combinations were selected for experimental testing and co-processed via milling. The experiments confirmed the predictions of the model in all three cases. This data-driven model will facilitate and expedite the screening phase for new binary COAMS.
Collapse
|
8
|
Wathoni N, Sari WA, Elamin KM, Mohammed AFA, Suharyani I. A Review of Coformer Utilization in Multicomponent Crystal Formation. Molecules 2022; 27:8693. [PMID: 36557827 PMCID: PMC9786674 DOI: 10.3390/molecules27248693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Most recently discovered active pharmaceutical molecules and market-approved medicines are poorly soluble in water, resulting in limited drug bioavailability and therapeutic effectiveness. The application of coformers in a multicomponent crystal method is one possible strategy to modulate a drug's solubility. A multicomponent crystal is a solid phase formed when several molecules of different substances crystallize in a crystal lattice with a certain stoichiometric ratio. The goal of this review paper is to comprehensively describe the application of coformers in the formation of multicomponent crystals as solutions for pharmaceutically active ingredients with limited solubility. Owing to their benefits including improved physicochemical profile of pharmaceutically active ingredients, multicomponent crystal methods are predicted to become increasingly prevalent in the development of active drug ingredients in the future.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymer for Drug and Cosmetic Delivery, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Wuri Ariestika Sari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Sekolah Tinggi Farmasi Muhammadiyah Cirebon, Jl. Cideng Indah No.3, Cirebon 45153, Indonesia
| |
Collapse
|
9
|
Amorphous and Co-Amorphous Olanzapine Stability in Formulations Intended for Wet Granulation and Pelletization. Int J Mol Sci 2022; 23:ijms231810234. [PMID: 36142179 PMCID: PMC9499418 DOI: 10.3390/ijms231810234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The preparation of amorphous and co-amorphous systems (CAMs) effectively addresses the solubility and bioavailability issues of poorly water-soluble chemical entities. However, stress conditions imposed during common pharmaceutical processing (e.g., tableting) may cause the recrystallization of the systems, warranting close stability monitoring throughout production. This work aimed at assessing the water and heat stability of amorphous olanzapine (OLZ) and OLZ-CAMs when subject to wet granulation and pelletization. Starting materials and products were characterized using calorimetry, diffractometry and spectroscopy, and their performance behavior was evaluated by dissolution testing. The results indicated that amorphous OLZ was reconverted back to a crystalline state after exposure to water and heat; conversely, OLZ-CAMs stabilized with saccharin (SAC), a sulfonic acid, did not show any significant loss of the amorphous content, confirming the higher stability of OLZ in the CAM. Besides resistance under the processing conditions of the dosage forms considered, OLZ-CAMs presented a higher solubility and dissolution rate than the respective crystalline counterpart. Furthermore, in situ co-amorphization of OLZ and SAC during granule production with high fractions of water unveils the possibility of reducing production steps and associated costs.
Collapse
|
10
|
da Costa NF, Daniels R, Fernandes AI, Pinto JF. Downstream Processing of Amorphous and Co-Amorphous Olanzapine Powder Blends. Pharmaceutics 2022; 14:pharmaceutics14081535. [PMID: 35893791 PMCID: PMC9332588 DOI: 10.3390/pharmaceutics14081535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/03/2023] Open
Abstract
The work evaluates the stability of amorphous and co-amorphous olanzapine (OLZ) in tablets manufactured by direct compression. The flowability and the compressibility of amorphous and co-amorphous OLZ with saccharin (SAC) and the properties of the tablets obtained were measured and compared to those of tablets made with crystalline OLZ. The flowability of the amorphous and mostly of the co-amorphous OLZ powders decreased in comparison with the crystalline OLZ due to the higher cohesiveness of the former materials. The stability of the amorphous and co-amorphous OLZ prior to and after tableting was monitored by XRPD, FTIR, and NIR spectroscopies. Tablets presented long-lasting amorphous OLZ with enhanced water solubility, but the release rate of the drug decreased in comparison with tablets containing crystalline OLZ. In physical mixtures made of crystalline OLZ and SAC, an extent of amorphization of approximately 20% was accomplished through the application of compaction pressures and dwell times of 155 MPa and 5 min, respectively. The work highlighted the stability of amorphous and co-amorphous OLZ during tableting and the positive effect of compaction pressure on the formation of co-amorphous OLZ, providing an expedited amorphization technique, given that the process development-associated hurdles were overcome.
Collapse
Affiliation(s)
- Nuno F. da Costa
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (N.F.d.C.); (J.F.P.)
| | - Rolf Daniels
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany;
| | - Ana I. Fernandes
- CiiEM—Interdisciplinary Research Center Egas Moniz, Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511 Caparica, Portugal
- Correspondence: ; Tel.: +351-212946823
| | - João F. Pinto
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (N.F.d.C.); (J.F.P.)
| |
Collapse
|
11
|
Amorphization of Drugs for Transdermal Delivery-a Recent Update. Pharmaceutics 2022; 14:pharmaceutics14050983. [PMID: 35631568 PMCID: PMC9143970 DOI: 10.3390/pharmaceutics14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/10/2022] Open
Abstract
Amorphous solid dispersion is a popular formulation approach for orally administered poorly water-soluble drugs, especially for BCS class II. But oral delivery could not be an automatic choice for some drugs with high first-pass metabolism susceptibility. In such cases, transdermal delivery is considered an alternative if the drug is potent and the dose is less than 10 mg. Amorphization of drugs causes supersaturation and enhances the thermodynamic activity of the drugs. Hence, drug transport through the skin could be improved. The stabilization of amorphous system is a persistent challenge that restricts its application. A polymeric system, where amorphous drug is dispersed in a polymeric carrier, helps its stability. However, high excipient load often becomes problematic for the polymeric amorphous system. Coamorphous formulation is another approach, where one drug is mixed with another drug or low molecular weight compound, which stabilizes each other, restricts crystallization, and maintains a single-phase homogenous amorphous system. Prevention of recrystallization along with enhanced skin permeation has been observed by the transdermal coamorphous system. But scalable manufacturing methods, extensive stability study and in-depth in vivo evaluation are lacking. This review has critically studied the mechanistic aspects of amorphization and transdermal permeation by analyzing recent researches in this field to propose a future direction.
Collapse
|
12
|
Chen X, Li D, Duan Y, Huang Y. Characterization of co-amorphous sinomenine-tranilast systems with strong intermolecular interactions and sustained release profiles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Raj Adhikari B, Bērziņš K, Fraser-Miller SJ, Cavallaro A, Gordon KC, Das SC. Optimization of Methionine in Inhalable High-dose Spray-dried Amorphous Composite Particles using Response Surface Method, Infrared and Low frequency Raman Spectroscopy. Int J Pharm 2022; 614:121446. [PMID: 34998923 DOI: 10.1016/j.ijpharm.2021.121446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
The influence of amino acids, other than leucine, in improving aerosolization of inhalable powders has not been widely explored. This detailed study focused on the use of methionine, another promising endogenous amino acid, in high dose spray-dried co-amorphous powders by investigating the influence of methionine proportion (0 - 20% w/w), and feed concentration (0.2 - 0.8% w/v) on aerosolization of kanamycin, a model drug, using a design of experiment approach. Low frequency Raman spectroscopy was used to assess the stability of the powders stored at 25 °C/53% relative humidity over 28 days. An increase in concentration of methionine was associated with an increase in fine particle fraction (FPF), with the highest FPF of 84% being achieved at 20% w/w and 0.2% w/v feed concentration. With an increase in feed concentration, both yield and particle size increased for all formulations; the FPF did not change except for kanamycin only formulation in which it decreased. During storage at high humidity, similar aerosolization stabilities were offered by different proportions of methionine although methionine crystallized out in all formulations. Furthermore, the crystallization was accompanied by surface enrichment of methionine on the particles. This study suggests that there is a direct relationship between methionine content and aerosolization for kanamycin-methionine amorphous matrices but feed concentration has little effect. In addition, methionine proportion has no effect on physical stability of such matrices at high humidity.
Collapse
Affiliation(s)
| | - Kārlis Bērziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|