1
|
Kawakami K, Ishitsuka T, Fukiage M, Nishida Y, Shirai T, Hirai Y, Hideshima T, Tanabe F, Shinoda K, Tamate R, Fujita T. Long-term physical stability of amorphous solid dispersions: Comparison of detection powers of common evaluation methods for spray-dried and hot-melt extruded formulations. J Pharm Sci 2025; 114:145-156. [PMID: 38950881 DOI: 10.1016/j.xphs.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Although physical stability can be a critical issue during the development of amorphous solid dispersions (ASDs), there are no established protocols to predict/detect their physical stability. In this study, we have prepared fenofibrate ASDs using two representative manufacturing methods, hot-melt extrusion and spray-drying, to investigate their physical stability for one year. Intentionally unstable ASDs were designed to compare the detection power of each evaluation method, including X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and dissolution study. Each method did not provide the same judgment results on physical stability in some cases because of their different evaluation principles and sensitivity, which has been well-comprehended only for one-component glass. This study revealed that the detection powers of each evaluation method significantly depended on the manufacturing methods. DSC was an effective method to detect a small amount of crystals for both types of ASDs in a quantitative manner. Although the sensitivity of XRPD was always lower compared to that of DSC, interpretation of the data was the easiest. SEM was very effective for observing the crystallization of the small amount of drug for hot-melt extruded products, as the drug crystal vividly appeared on the large grains. The dissolution performance of spray-dried products could change even without any indication of physical change including crystallization. The advantage/disadvantage and complemental roles of each evaluation method are discussed for deeper understanding on the physical stability data of ASDs.
Collapse
Affiliation(s)
- Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Taichi Ishitsuka
- Pharmaceutical R&D, Ono Pharmaceutical Co., Ltd., 1-15-26, Kamiji, higashinari-ku, Osaka 537-0003, Japan
| | - Masafumi Fukiage
- Pharmaceutical R&D, Ono Pharmaceutical Co., Ltd., 1-15-26, Kamiji, higashinari-ku, Osaka 537-0003, Japan
| | - Yohei Nishida
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Tetsuo Shirai
- API and Pharmaceutical Development Department, Fuji Chemical Industries Co., Ltd., 1, Gohkakizawa, Kamiichi, Nakaniikawa, Toyama 930-0397, Japan
| | - Yosuke Hirai
- API and Pharmaceutical Development Department, Fuji Chemical Industries Co., Ltd., 1, Gohkakizawa, Kamiichi, Nakaniikawa, Toyama 930-0397, Japan
| | - Tetsu Hideshima
- API and Pharmaceutical Development Department, Fuji Chemical Industries Co., Ltd., 1, Gohkakizawa, Kamiichi, Nakaniikawa, Toyama 930-0397, Japan
| | - Fumiaki Tanabe
- Nara Machinery Co., Ltd., 2-5-7 Jonan-Jima, Ohta-ku, Tokyo 143-0002, Japan
| | - Koji Shinoda
- Nara Machinery Co., Ltd., 2-5-7 Jonan-Jima, Ohta-ku, Tokyo 143-0002, Japan
| | - Ryota Tamate
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takuya Fujita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
2
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
3
|
Yan H, Zhong X, Liu Y. Improving the Solubility, Stability, and Bioavailability of Albendazole through Synthetic Salts. Molecules 2024; 29:3571. [PMID: 39124976 PMCID: PMC11314343 DOI: 10.3390/molecules29153571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Albendazole (ABZ) is a highly effective yet poorly water-soluble antiparasitic drug known to form salts (ABZ-FMA, ABZ-DTA, and ABZ-HCl) with fumaric acid (FMA), D-tartaric acid (DTA), and hydrochloric acid (HCl). This research utilized a range of analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), powder X-ray diffraction (PXRD), dynamic vapor sorption (DVS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), to validate and characterize the solid-state properties of these drug salts. This study also assessed the solubility and intrinsic dissolution rate (IDR) of these salts under different pH conditions compared to the active pharmaceutical ingredient (API) and conducted stability studies. Moreover, the in vivo pharmacokinetic performance of ABZ salt was evaluated. The results of this study reveal that the new solid form of ABZ is primarily associated with amino acid esters and benzimidazole groups, forming intermolecular interactions. All three ABZ salts significantly improved the solubility and dissolution rate of ABZ, with ABZ-HCl demonstrating the optimal performance. Importantly, the drug salt exhibited robust physical stability when exposed to adverse conditions, including strong light irradiation (4500 ± 500 lux), high humidity (92.5 ± 5% relative humidity), elevated temperatures (50 ± 2 °C), and accelerated test conditions (40 °C/75 ± 5% relative humidity). Lastly, the in vivo pharmacokinetic analysis demonstrated that ABZ salt led to a substantial increase in AUC(0-24) and Cmax compared to ABZ. This elevation in solubility in aqueous solvents signifies that ABZ salt exhibits characteristics that can enhance oral bioavailability and pharmacokinetics. These findings provide potential solutions for the development of more effective and innovative drug formulations.
Collapse
Affiliation(s)
- Haiying Yan
- Medical College, Qinghai University, Xining 810001, China; (X.Z.); (Y.L.)
| | | | | |
Collapse
|
4
|
Han MJ, Zou ZZ. Enabling a novel solvent method on Albendazole solid dispersion to improve the in vivo bioavailability. Eur J Pharm Sci 2024; 196:106751. [PMID: 38508502 PMCID: PMC11055451 DOI: 10.1016/j.ejps.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Albendazole, a vital medication endorsed by the World Health Organization for combating parasitic infections, encounters a challenge stemming from its low solubility, significantly impeding absorption and bioavailability. Albendazole has near-insolubility in most organic solvents, so the solid dispersions of albendazole were predominantly using the fusion method. However, the solvent method could offer the advantage of achieving molecular-level mixing homogeneity. In this investigation, we incorporated the pH adjustment to prepare albendazole solid dispersion using a solvent method, which utilizes trace amounts of HCl in methanol, yielding notably enhanced albendazole solubility. Subsequently, carriers such as PEG6000/Poloxamer 188 (PEG: polyethylene glycol) and PVP K30/Poloxamer 188 (PVP: polyvinylpyrrolidone) were employed to create albendazole solid dispersions. Comprehensive characterization through dissolution rate analysis, PXRD (Powder X-ray diffraction), SEM (Scanning electron microscopy), DSC (differential scanning calorimetry), and pharmacokinetic (PK) studies in mice and rats was conducted. The findings indicate that the solid dispersion effectively transforms the crystalline state of albendazole into an amorphous state, resulting in significantly enhanced in vivo absorption and a 5.9-fold increase in exposure. Besides, the exposure increased 1.64 times of commercial albendazole tablets. Notably, PEG6000/Poloxamer 188 and PVP K30/Poloxamer 188 solid dispersions exhibited superior dissolution rates and pharmacokinetic profiles compared to commercially available albendazole tablets.
Collapse
Affiliation(s)
- Ming-Jie Han
- Department of DMPK, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing, PR China.
| | - Zhiyang Zack Zou
- Department of DMPK, Global Health Drug Discovery Institute, Zhongguancun Dongsheng International Science Park, Beijing, PR China.
| |
Collapse
|
5
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
6
|
Andrews GP, Qian K, Jacobs E, Jones DS, Tian Y. High drug loading nanosized amorphous solid dispersion (NASD) with enhanced in vitro solubility and permeability: Benchmarking conventional ASD. Int J Pharm 2023; 632:122551. [PMID: 36581107 DOI: 10.1016/j.ijpharm.2022.122551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Through liquid-liquid phase separation (LLPS), it is possible to generate drug-rich nanoparticles during the dissolution of conventional amorphous solid dispersions (ASDs). These self-generated nanoparticles may improve the oral absorption of poorly water-soluble drugs by enhancing the drug's apparent solubility and effective membrane permeability. However, due to the high concentration threshold required for LLPS, conventional ASDs that can consistently generate drug-rich nanoparticles during dissolution are rare. More importantly, the quality of these meta-stable drug-rich nanoparticles is hard to control during dissolution, leading to inconsistency in formulation performances. This work has described a continuous twin-screw extrusion process capable of producing nanosized ASD (NASD) formulations that can offer better solubility and permeability enhancements over conventional ASD formulations. Two polymeric carriers, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), with a model hydrophobic drug celecoxib (BCS II), were formulated into both ASD and NASD formulations. Compared to the conventional ASD formulation, the prefabricated NASD (sizes ranging between 40 and 200 nm) embedded within a polyol matrix can be rapidly dispersed into a nanoparticle suspension in the presence of aqueous media. The resulting NASDs achieved drug loadings up to 80 % w/w and a maximum of 98 % encapsulation efficiency. Because of the TSE platform's high drug-loading capacity and high scalability, the developed method may be useful for continuously producing personalized nanomedicines.
Collapse
Affiliation(s)
- Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Kaijie Qian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Esther Jacobs
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom
| | - Yiwei Tian
- School of Pharmacy, Queen's University Belfast, BT9 7BL, United Kingdom.
| |
Collapse
|
7
|
Fan Y, Castleberry S. High-throughput kinetic turbidity analysis for determination of amorphous solubility and excipient screening for amorphous solid dispersions. Int J Pharm 2023; 631:122495. [PMID: 36526147 DOI: 10.1016/j.ijpharm.2022.122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Many poorly water-soluble active pharmaceutical ingredients (APIs) rely on supersaturating formulations, such as amorphous solid dispersions (ASDs), to enhance oral bioavailability. ASDs kinetically trap amorphous solid drugs within polymer excipient matrices to maintain the amorphous drug states. The maximum solution concentration of the API in these formulations is known as the amorphous solubility. In early drug development with scarce material and time, high-throughput approaches to measuring amorphous solubility and screening excipient effects on crystallization risk offer significant benefits to preclinical formulation scientists. Here, we developed a high-throughput screening (HTS) workflow to quantify amorphous solubility and screen ASD excipients by automated kinetic turbidity analysis. Testing 20 model APIs with a wide range of biorelevant solubility, we demonstrated their apparent amorphous solubility determined by the HTS approach strongly correlated with quantification results using conventional liquid chromatography; while the real-time analysis significantly saved analytical time and experimental efforts. Furthermore, kinetic turbidity profiles elucidated distinct excipient effects on the precipitation process of APIs. These results were successfully translated to dissolution and precipitation behaviors of ASD formulations composed of the tested polymers. The high-throughput kinetic turbidity workflow presents a facile and information-rich approach for amorphous solubility screenings against excipients, and helps guide enabling formulation development.
Collapse
Affiliation(s)
- Yuchen Fan
- Small Molecule Pharmaceutical Sciences, Research and Early Development, Genentech Inc. 1 DNA Way, South San Francisco, CA 94080, USA
| | - Steven Castleberry
- Small Molecule Pharmaceutical Sciences, Research and Early Development, Genentech Inc. 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
8
|
Liu L, Nie J, Li L. Phospholipid Complexation for Bioavailability Improvement of Albendazole: Preparation, Characterization and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:36. [PMID: 36635447 DOI: 10.1208/s12249-022-02497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
The current study aimed to improve the poor solubility of albendazole (ABZ) by means of phospholipid complexation, hence to improve its oral bioavailability. The solvent-evaporation method for ABZ-phospholipid complex (ABZ-PC) preparation was established for the first time. And a systematic optimization of preparation conditions of ABZ-PC was performed. Physicochemical studies of ABZ-PC were performed with FTIR, DSC, and XRD measurements to confirm the formation of the ABZ-PC and reveal the interaction mechanism between ABZ and phospholipid molecules. Solubility determination and morphological characterization were applied to verify the solubility improvement of prepared ABZ-PC. Moreover, the pharmacokinetic performance of ABZ-PC was further evaluated in vivo compared with raw materials of ABZ. Under optimal preparation conditions, the AE of ABZ-PC could be approximately 100%. Physicochemical studies indicated that the P = O group in the phospholipid molecule would interact with the N-H group in the ABZ molecule through hydrogen bonds and ABZ was dispersed in an amorphous state after being prepared into ABZ-PC. The aqueous solubility of ABZ-PC in deionized water (pH7.0) improved by 30-folds than free ABZ, and the AUC0-t of ABZ-PC was significantly increased by 2.32 times in comparison with raw materials of ABZ through oral administration. The current study developed an effective method for the phospholipid complexation of ABZ. With significantly improved solubility in an aqueous environment, the prepared ABZ-PC exhibited improved oral bioavailability and pharmacokinetic characteristics indicating it could be potentially applied in the oral drug delivery of ABZ.
Collapse
Affiliation(s)
- Liyao Liu
- College of Basic Science, Tianjin Agriculture University, Tianjin, 300392, People's Republic of China
| | - Jinju Nie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, People's Republic of China.
| | - Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Pöstges F, Kayser K, Appelhaus J, Monschke M, Gütschow M, Steinebach C, Wagner KG. Solubility Enhanced Formulation Approaches to Overcome Oral Delivery Obstacles of PROTACs. Pharmaceutics 2023; 15:pharmaceutics15010156. [PMID: 36678785 PMCID: PMC9863516 DOI: 10.3390/pharmaceutics15010156] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development. Therefore, we investigated the solubility enhancement employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing, HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs were subsequently characterized with respect to their solid state via differential scanning calorimetry (DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome the low solubility of PROTACs.
Collapse
Affiliation(s)
- Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Jan Appelhaus
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Marius Monschke
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Steinebach
- Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: (C.S.); (K.G.W.); Tel.: +49-228-73-2308 (C.S.); +49-228-73-5271 (K.G.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- Correspondence: (C.S.); (K.G.W.); Tel.: +49-228-73-2308 (C.S.); +49-228-73-5271 (K.G.W.)
| |
Collapse
|
10
|
Fukiage M, Suzuki K, Matsuda M, Nishida Y, Oikawa M, Fujita T, Kawakami K. Inhibition of Liquid-Liquid Phase Separation for Breaking the Solubility Barrier of Amorphous Solid Dispersions to Improve Oral Absorption of Naftopidil. Pharmaceutics 2022; 14:pharmaceutics14122664. [PMID: 36559158 PMCID: PMC9782492 DOI: 10.3390/pharmaceutics14122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most promising technologies for improving the oral absorption of poorly soluble compounds. In this study, naftopidil (NFT) ASDs were prepared using vinylpyrrolidone-vinyl acetate copolymer (PVPVA), hydroxypropyl methylcellulose acetate succinate (HPMCAS), and poly(methacrylic acid-co-methyl methacrylate) L100-55 (Eudragit) to improve the dissolution and oral absorption behaviors of NFT. During the dissolution process of ASD, liquid-liquid phase separation (LLPS) may occur when certain requirements are met for providing a maximum quasi-stable concentration achievable by amorphization. The occurrence of LLPS was confirmed in the presence of PVPVA and HPMCAS; however, Eudragit inhibited LLPS owing to its molecular interaction with NFT. Although the dissolution behavior of the Eudragit ASD was found to be markedly poorer than that of other ASDs, it offered the best oral absorption in rats. The findings of the current study highlight the possibility for improving the oral absorption of poorly soluble drugs by this ASD, which should be eliminated from candidate formulations based on the conventional in vitro tests.
Collapse
Affiliation(s)
- Masafumi Fukiage
- Pharmaceutical R&D, Ono Pharmaceutical Co., Ltd., 3-3-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Osaka, Japan
- Correspondence: (M.F.); (K.K.); Tel.: +81-75-961-1151 (M.F.); Tel.: +81-29-860-4424 (K.K.)
| | - Kyosuke Suzuki
- Pharmaceutical and ADMET Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Maki Matsuda
- Research & Development Division, Towa Pharmaceutical Co., Ltd., 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Kyoto, Japan
| | - Yohei Nishida
- Technology Research & Development, Sumitomo Pharma Co., Ltd., 33-94, Enoki-cho, Suita, Osaka 564-0053, Osaka, Japan
| | - Michinori Oikawa
- Pharmaceutical Development Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Osaka, Japan
| | - Takuya Fujita
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Kyoto 525-8577, Shiga, Japan
| | - Kohsaku Kawakami
- Research Center for Functionals Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Correspondence: (M.F.); (K.K.); Tel.: +81-75-961-1151 (M.F.); Tel.: +81-29-860-4424 (K.K.)
| |
Collapse
|
11
|
Thermodynamic Correlation between Liquid-Liquid Phase Separation and Crystalline Solubility of Drug-Like Molecules. Pharmaceutics 2022; 14:pharmaceutics14122560. [PMID: 36559054 PMCID: PMC9782016 DOI: 10.3390/pharmaceutics14122560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of the present study was to experimentally confirm the thermodynamic correlation between the intrinsic liquid−liquid phase separation (LLPS) concentration (S0LLPS) and crystalline solubility (S0c) of drug-like molecules. Based on the thermodynamic principles, the crystalline solubility LLPS concentration melting point (Tm) equation (CLME) was derived (log10S0C=log10S0LLPS−0.0095Tm−310 for 310 K). The S0LLPS values of 31 drugs were newly measured by simple bulk phase pH-shift or solvent-shift precipitation tests coupled with laser-assisted visual turbidity detection. To ensure the precipitant was not made crystalline at <10 s, the precipitation tests were also performed under the polarized light microscope. The calculated and observed log10S0C values showed a good correlation (root mean squared error: 0.40 log unit, absolute average error: 0.32 log unit).
Collapse
|
12
|
Liposomal Formulation for Oral Delivery of Cyclosporine A: Usefulness as a Semisolid-Dispersion System. Pharm Res 2022; 39:977-987. [PMID: 35501532 DOI: 10.1007/s11095-022-03276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE This study aims to understand the process and mechanism of oral drug absorption from liposomes and to verify the usefulness of liposomal formulation for poorly soluble drugs. METHODS Cyclosporine A (CsA) was used as a model drug and entrapped into Dipalmitoylphosphatidylcholine (DPPC) and distearoylphosphatidylcholine (DSPC) liposomes. Molecular state of CsA in the liposomes was analyzed using powder X-ray diffraction (PXRD) and polarized light microscopy (PLM). Release profiles of CsA from liposomes were observed in fasted state simulated intestinal fluid (FaSSIF). Oral absorption of CsA from liposomal formulations were investigated in rats. RESULTS PXRD and PLM analyses suggested that CsA exists in the lipid layer of liposomes as a molecular dispersed state. Although both liposomes retained CsA stably in the simple buffer, DPPC liposomes quickly released CsA within 10 min in FaSSIF due to the interaction with bile acid. In contrast, effect of bile acid was negligible in DSPC, indicating a high resistivity to membrane perturbation. Oral bioavailability of CsA from liposomal formulations were almost comparable with that from a marketed product (Neoral). However, the absorption profiles were clearly different. CsA was absorbed quickly from DPPC liposomes and Neoral, while sustained absorption profile was observed from DSPC liposomes. Further study in which ritonavir was co-entrapped in the liposomes with CsA showed the higher efficacy of ritonavir to increase oral bioavailability of CsA. CONCLUSION Liposomes allows the appropriate formulation design for oral delivery of poorly soluble drugs, not only to increase the extent but also to control the rate of absorption.
Collapse
|