1
|
Mahmoud Abd-Alaziz D, Mansour M, Nasr M, Sammour O. Tailored green synthesized silymarin-selenium nanoparticles: Topical nanocarrier of promising antileishmanial activity. Int J Pharm 2024; 660:124275. [PMID: 38797252 DOI: 10.1016/j.ijpharm.2024.124275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Poor drug penetration, emerging drug resistance, and systemic toxicity are among the major obstacles challenging the current treatment of cutaneous leishmaniasis. Hence, developing advanced strategies for effective and targeted delivery of antileishmanial agents is crucial. Several drug delivery carriers have been developed till current date for dermal/transdermal delivery, especially those which are fabricated using eco-friendly synthesis approaches, since they protect the environment from the harmful effects of chemical waste disposal. This work describes the preparation of selenium nanoparticles loaded with silymarin via one-pot green reduction technique, for treatment of cutaneous leishmaniasis. The selected silymarin loaded selenium nanoparticles (SSNs4-0.1) displayed good loading efficiency of 58.22 ± 0.56 %, zeta potential of -30.63 ± 0.40 mV, hydrodynamic diameter of 245.77 ± 11.12 nm, and polydispersity index of 0.19 ± 0.01. It exhibited good physical stability, as well as high ex vivo deposition % in the epidermis (46.98 ± 1.51 %) and dermis (35.23 ± 1.72 %), which was further proven using confocal laser microscopy. It also exhibited significant cytocompatibility and noticeable cellular internalization of 90.02 ± 3.81 % in human fibroblasts, as well as high trypanothione reductase inhibitory effect (97.10 ± 0.30 %). Results of this study confirmed the successful green synthesis of silymarin-loaded selenium nanoparticles; delineating them as one of the promising antileishmanial topical delivery systems.
Collapse
Affiliation(s)
- Dina Mahmoud Abd-Alaziz
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Hasanvand S, Ebrahimi B, Paimard G, Rouhi M, Hashami Z, Zibaei R, Roshandel Z, Mohammadi R. Optimization of Seleno-chitosan-phytic acid nanocomplex for efficient removal of patulin from apple juice. Food Chem 2024; 443:138576. [PMID: 38301556 DOI: 10.1016/j.foodchem.2024.138576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 μg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.
Collapse
Affiliation(s)
- Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical Uni-versity, Wenzhou, Zhejiang 325027, China
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Roshandel
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Ansari JA, Malik JA, Ahmed S, Manzoor M, Ahemad N, Anwar S. Recent advances in the therapeutic applications of selenium nanoparticles. Mol Biol Rep 2024; 51:688. [PMID: 38796570 PMCID: PMC11127871 DOI: 10.1007/s11033-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Selenium nanoparticles (SeNPs) are an appealing carrier for the targeted delivery. The selenium nanoparticles are gaining global attention because of the potential therapeutic applications in several diseases e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD), asthma, liver, and various autoimmune disorders like psoriasis, cancer, diabetes, and a variety of infectious diseases. Despite the fact still there is no recent literature that summarises the therapeutic applications of SeNPs. There are some challenges that need to be addressed like finding targets for SeNPs in various diseases, and the various functionalization techniques utilized to increase SeNP's stability while facilitating wide drug-loaded SeNP distribution to tumor areas and preventing off-target impacts need to focus on understanding more about the therapeutic aspects for better understanding the science behind it. Keeping that in mind we have focused on this gap and try to summarize all recent key targeted therapies for SeNPs in cancer treatment and the numerous functionalization strategies. We have also focused on recent advancements in SeNP functionalization methodologies and mechanisms for biomedical applications, particularly in anticancer, anti-inflammatory, and anti-infection therapeutics. Based on our observation we found that SeNPs could potentially be useful in suppressing viral epidemics, like the ongoing COVID-19 pandemic, in complement to their antibacterial and antiparasitic uses. SeNPs are significant nanoplatforms with numerous desirable properties for clinical translation.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, (BAMU, Aurangabad), India
| | - Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Muntaha Manzoor
- Department of Clinical Pharmacology, Sher - i - Kashmir Institute of Medical Sciences, Soura, Srinagar, India
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, DE, 47500, Malaysia.
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
4
|
Zenze M, Singh M. Receptor Targeting Using Copolymer-Modified Gold Nanoparticles for pCMV-Luc Gene Delivery to Liver Cancer Cells In Vitro. Int J Mol Sci 2024; 25:5016. [PMID: 38732235 PMCID: PMC11084699 DOI: 10.3390/ijms25095016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
5
|
Himoto T, Masaki T. Current Trends on the Involvement of Zinc, Copper, and Selenium in the Process of Hepatocarcinogenesis. Nutrients 2024; 16:472. [PMID: 38398797 PMCID: PMC10892613 DOI: 10.3390/nu16040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Numerous nutritional factors increase the risk of hepatocellular carcinoma (HCC) development. The dysregulation of zinc, copper, and selenium homeostasis is associated with the occurrence of HCC. The impairment of the homeostasis of these essential trace elements results in oxidative stress, DNA damage, cell cycle progression, and angiogenesis, finally leading to hepatocarcinogenesis. These essential trace elements can affect the microenvironment in HCC. The carrier proteins for zinc and copper and selenium-containing enzymes play important roles in the prevention or progression of HCC. These trace elements enhance or alleviate the chemosensitivity of anticancer agents in patients with HCC. The zinc, copper, or selenium may affect the homeostasis of other trace elements with each other. Novel types of cell death including ferropotosis and cupropotosis are also associated with hepatocarcinogenesis. Therapeutic strategies for HCC that target these carrier proteins for zinc and copper or selenium-containing enzymes have been developed in in vitro and in vivo studies. The use of zinc-, copper- or selenium-nanoparticles has been considered as novel therapeutic agents for HCC. These results indicate that zinc, copper, and selenium may become promising therapeutic targets in patients with HCC. The clinical application of these agents is an urgent unmet requirement. This review article highlights the correlation between the dysregulation of the homeostasis of these essential trace elements and the development of HCC and summarizes the current trends on the roles of these essential trace elements in the pathogenesis of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-cho, Takamatsu 761-0123, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho 761-0793, Kagawa, Japan
| |
Collapse
|
6
|
Bai C, Wang C, Lu Y. Novel Vectors and Administrations for mRNA Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303713. [PMID: 37475520 DOI: 10.1002/smll.202303713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Indexed: 07/22/2023]
Abstract
mRNA therapy has shown great potential in infectious disease vaccines, cancer immunotherapy, protein replacement therapy, gene editing, and other fields due to its central role in all life processes. However, mRNA is challenging to pass through the cell membrane due to its significant negative charges and degradation from RNase, so the key to mRNA therapy is efficient packaging and delivery of it with appropriate vectors. Presently researchers have developed various vectors such as viruses and liposomes, but these conventional vectors are now difficult to meet the growing requirement like safety, efficiency, and targeting, so many novel delivery vectors with unique advantages have emerged recently. This review mainly introduces two categories of novel vectors: biomacromolecules and inorganic nanoparticles, as well as two novel methods of control and administration based on these novel vectors: controlled-release administration and non-invasive administration. These novel delivery strategies have the advantages of high safety, biocompatibility, versatility, intelligence, and targeting. This paper analyzes the challenges faced by the field of mRNA delivery in depth, and discusses how to use the characteristics of novel vectors and administrations to solve these problems.
Collapse
Affiliation(s)
- Chenghai Bai
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Anastassiadis T, Köhrer C. Ushering in the era of tRNA medicines. J Biol Chem 2023; 299:105246. [PMID: 37703991 PMCID: PMC10583094 DOI: 10.1016/j.jbc.2023.105246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
Long viewed as an intermediary in protein translation, there is a growing awareness that tRNAs are capable of myriad other biological functions linked to human health and disease. These emerging roles could be tapped to leverage tRNAs as diagnostic biomarkers, therapeutic targets, or even as novel medicines. Furthermore, the growing array of tRNA-derived fragments, which modulate an increasingly broad spectrum of cellular pathways, is expanding this opportunity. Together, these molecules offer drug developers the chance to modulate the impact of mutations and to alter cell homeostasis. Moreover, because a single therapeutic tRNA can facilitate readthrough of a genetic mutation shared across multiple genes, such medicines afford the opportunity to define patient populations not based on their clinical presentation or mutated gene but rather on the mutation itself. This approach could potentially transform the treatment of patients with rare and ultrarare diseases. In this review, we explore the diverse biology of tRNA and its fragments, examining the past and present challenges to provide a comprehensive understanding of the molecules and their therapeutic potential.
Collapse
|
8
|
Yuan M, Han Z, Liang Y, Sun Y, He B, Chen W, Li F. mRNA nanodelivery systems: targeting strategies and administration routes. Biomater Res 2023; 27:90. [PMID: 37740246 PMCID: PMC10517595 DOI: 10.1186/s40824-023-00425-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/26/2023] [Indexed: 09/24/2023] Open
Abstract
With the great success of coronavirus disease (COVID-19) messenger ribonucleic acid (mRNA) vaccines, mRNA therapeutics have gained significant momentum for the prevention and treatment of various refractory diseases. To function efficiently in vivo and overcome clinical limitations, mRNA demands safe and stable vectors and a reasonable administration route, bypassing multiple biological barriers and achieving organ-specific targeted delivery of mRNA. Nanoparticle (NP)-based delivery systems representing leading vector approaches ensure the successful intracellular delivery of mRNA to the target organ. In this review, chemical modifications of mRNA and various types of advanced mRNA NPs, including lipid NPs and polymers are summarized. The importance of passive targeting, especially endogenous targeting, and active targeting in mRNA nano-delivery is emphasized, and different cellular endocytic mechanisms are discussed. Most importantly, based on the above content and the physiological structure characteristics of various organs in vivo, the design strategies of mRNA NPs targeting different organs and cells are classified and discussed. Furthermore, the influence of administration routes on targeting design is highlighted. Finally, an outlook on the remaining challenges and future development toward mRNA targeted therapies and precision medicine is provided.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266073, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
9
|
Zenze M, Daniels A, Singh M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023; 15:398. [PMID: 36839720 PMCID: PMC9961584 DOI: 10.3390/pharmaceutics15020398] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The formulation of nanoscale systems with well-defined sizes and shapes is of great interest in applications such as drug and gene delivery, diagnostics and imaging. Dendrimers are polymers that have attracted interest due to their size, shape, branching length, amine density, and surface functionalities. These unique characteristics of dendrimers set them apart from other polymers, their ability to modify nanoparticles (NPs) for biomedical applications. Dendrimers are spherical with multiple layers over their central core, each representing a generation. Their amphiphilic nature and hollow structure allow for the incorporation of multiple drugs or genes, in addition to enabling easy surface modification with cellular receptor-targeting moieties to ensure site-specific delivery of therapeutics. Dendrimers are employed in chemotherapeutic applications for the delivery of anticancer drugs. There are many inorganic NPs currently being investigated for cancer therapy, each with their own unique biological, chemical, and physical properties. To favor biomedical applications, inorganic NPs require suitable polymers to ensure stability, biodegradability and target specificity. The success of dendrimers is dependent on their unique structure, good bioavailability and stability. In this review, we describe the properties of dendrimers and their use as modifiers of inorganic NPs for enhanced therapeutic delivery. Herein, we review the significant developments in this area from 2015 to 2022. Databases including Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central (BMC), and PubMed were searched for articles using dendrimers, inorganic nanoparticles and cancer as keywords.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
10
|
Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
12
|
Yuan X, Tao Y, Xiao W, Du K, Hu H, Xu D, Xu Q. Conjugates of lactobionic acid and IR820: New photosensitizers for efficient photodynamic therapy of hepatoma cells. Drug Dev Res 2022; 83:1923-1933. [DOI: 10.1002/ddr.22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyin Yuan
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Yayu Tao
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Wen Xiao
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Kunda Du
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Hang Hu
- School of Pharmacy Changzhou University Changzhou P. R. China
- Jiangsu Hope‐pharm Co., Ltd Changzhou P. R. China
| | - Defeng Xu
- School of Pharmacy Changzhou University Changzhou P. R. China
| | - Qingbo Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University) Zhuhai P. R. China
| |
Collapse
|
13
|
Progress in the Surface Functionalization of Selenium Nanoparticles and Their Potential Application in Cancer Therapy. Antioxidants (Basel) 2022; 11:antiox11101965. [PMID: 36290687 PMCID: PMC9598587 DOI: 10.3390/antiox11101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
As an essential micronutrient, selenium participates in numerous life processes and plays a key role in human health. In the past decade, selenium nanoparticles (SeNPs) have attracted great attention due to their excellent functionality for potential applications in pharmaceuticals. However, the utilization of SeNPs has been restricted by their instability and low targeting ability. Since the existing reviews mainly focused on the applications of SeNPs, this review highlights the synthesis of SeNPs and the strategies to improve their stability and targeting ability through surface functionalization. In addition, the utilization of functionalized SeNPs for the single and co-delivery of drugs or genes to achieve the combination of therapy are also presented, with the emphasis on the potential mechanism. The current challenges and prospects of functionalized SeNPs are also summarized. This review may provide valuable information for the design of novel functionalized SeNPs and promote their future application in cancer therapy.
Collapse
|
14
|
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses 2022; 14:v14091939. [PMID: 36146747 PMCID: PMC9503375 DOI: 10.3390/v14091939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Mohube B. Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- Correspondence:
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Anna Kramvis
- Hepatitis Diversity Research Unit, Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kubendran Naidoo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Omphile E. Simani
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tongai G. Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
15
|
Chen G, Yang F, Fan S, Jin H, Liao K, Li X, Liu GB, Liang J, Zhang J, Xu JF, Pi J. Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Front Immunol 2022; 13:956181. [PMID: 35958612 PMCID: PMC9361286 DOI: 10.3389/fimmu.2022.956181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022] Open
Abstract
Current chemotherapy strategies used in clinic appear with lots of disadvantages due to the low targeting effects of drugs and strong side effects, which significantly restricts the drug potency, causes multiple dysfunctions in the body, and even drives the emergence of diseases. Immunotherapy has been proved to boost the body’s innate and adaptive defenses for more effective disease control and treatment. As a trace element, selenium plays vital roles in human health by regulating the antioxidant defense, enzyme activity, and immune response through various specific pathways. Profiting from novel nanotechnology, selenium nanoparticles have been widely developed to reveal great potential in anticancer, antibacterial, and anti-inflammation treatments. More interestingly, increasing evidence has also shown that functional selenium nanoparticles can be applied for potential immunotherapy, which would achieve more effective treatment efficiency as adjunctive therapy strategies for the current chemotherapy. By directly interacting with innate immune cells, such as macrophages, dendritic cells, and natural killer cells, selenium nanoparticles can regulate innate immunity to intervene disease developments, which were reported to boost the anticancer, anti-infection, and anti-inflammation treatments. Moreover, selenium nanoparticles can also activate and recover different T cells for adaptive immunity regulations to enhance their cytotoxic to combat cancer cells, indicating the potential of selenium nanoparticles for potential immunotherapy strategy development. Here, aiming to enhance our understanding of the potential immunotherapy strategy development based on Se NPs, this review will summarize the immunological regulation effects of selenium nanoparticles and the application of selenium nanoparticle-based immunotherapy strategies. Furthermore, we will discuss the advancing perspective of selenium nanoparticle-based potential immunotherapy as a kind of novel adjunctive therapy to enhance the efficiency of current chemotherapies and also introduce the current obstacles for the development of selenium nanoparticles for potential immunotherapy strategy development. This work is expected to promote the future research on selenium nanoparticle-assisted immunotherapy and finally benefit the more effective disease treatments against the threatening cancer and infectious and chronic diseases.
Collapse
Affiliation(s)
- Gengshi Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Kangsheng Liao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xuemeng Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Pathogenic Biology and Immunology, School of Basic Medicine, Guangdong Medical University, Dongguan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Jing Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Junai Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
- *Correspondence: Junai Zhang, ; Jun-Fa Xu, ; Jiang Pi,
| |
Collapse
|
16
|
Zuma LK, Gasa NL, Mazibuko X, Simelane MBC, Pillay P, Kwezi L, Tsekoa T, Pooe OJ. Recombinant Expression, Purification and PEGylation of DNA Ligases. Protein Pept Lett 2022; 29:505-513. [PMID: 35657285 DOI: 10.2174/0929866529666220426122432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Reagent proteins such as DNA ligases play a central role in the global reagents market. DNA ligases are routinely used and are vital in academic and science research environments. Their major functions include sealing nicks by linking the 5'-phosphorylated end to a 3'-hydroxyl end on the phosphodiester backbone of DNA, utilizing ATP or NADP molecules as an energy source. OBJECTIVE The current study sought to investigate the role of PEGylation on the biological activity of purified recombinant DNA ligases. METHOD We produced two recombinant DNA ligases (Ligsv081 and LigpET30) using E. coli expression system and subsequently purified using affinity chromatography. The produced proteins were conjugated to site specific PEGylation or non-specific PEGylation. FTIR and UV-VIS spectroscopy were used to analyze secondary structures of the PEG conjugated DNA ligases. Differential scanning fluorimetry was employed to assess the protein stability when subjected various PEGylation conditions. RESULTS In this study, both recombinant DNA ligases were successfully expressed and purified as homogenous proteins. Protein PEGylation enhanced ligation activity, increased transformation efficiency by 2-fold for plasmid ligations and reduced the formation of protein aggregates. CONCLUSION Taken together, site-specific PEGylation can potentially be explored to enhance the biological activity and stability of reagent proteins such as ligases.
Collapse
Affiliation(s)
- Lindiwe Khumbuzile Zuma
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nothando Lovedale Gasa
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xolani Mazibuko
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Priyen Pillay
- Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Tsepo Tsekoa
- Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse Jacob Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050937. [PMID: 35631523 PMCID: PMC9145864 DOI: 10.3390/pharmaceutics14050937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is among the leading causes of mortality globally, with nearly 10 million deaths in 2020. The emergence of nanotechnology has revolutionised treatment strategies in medicine, with rigorous research focusing on designing multi-functional nanoparticles (NPs) that are biocompatible, non-toxic, and target-specific. Iron-oxide-based NPs have been successfully employed in theranostics as imaging agents and drug delivery vehicles for anti-cancer treatment. Substituted iron-oxides (MFe2O4) have emerged as potential nanocarriers due to their unique and attractive properties such as size and magnetic tunability, ease of synthesis, and manipulatable properties. Current research explores their potential use in hyperthermia and as drug delivery vehicles for cancer therapy. Significantly, there are considerations in applying iron-oxide-based NPs for enhanced biocompatibility, biodegradability, colloidal stability, lowered toxicity, and more efficient and targeted delivery. This review covers iron-oxide-based NPs in cancer therapy, focusing on recent research advances in the use of ferrites. Methods for the synthesis of cubic spinel ferrites and the requirements for their considerations as potential nanocarriers in cancer therapy are discussed. The review highlights surface modifications, where functionalisation with specific biomolecules can deliver better efficiency. Finally, the challenges and solutions for the use of ferrites in cancer therapy are summarised.
Collapse
|
18
|
Uchida S. Delivery Systems of Plasmid DNA and Messenger RNA for Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040810. [PMID: 35456642 PMCID: PMC9029576 DOI: 10.3390/pharmaceutics14040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 12/10/2022] Open
Abstract
The vast potential of non-viral delivery systems of messenger RNA (mRNA) and plasmid DNA (pDNA) has been demonstrated in the vaccines against coronavirus disease 2019 (COVID-19) [...]
Collapse
Affiliation(s)
- Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki 210-0821, Japan
| |
Collapse
|
19
|
Byun MJ, Lim J, Kim SN, Park DH, Kim TH, Park W, Park CG. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BIOCHIP JOURNAL 2022; 16:128-145. [PMID: 35261724 PMCID: PMC8891745 DOI: 10.1007/s13206-022-00052-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
Abstract
RNA therapeutics, including messenger RNA (mRNA) and small interfering RNA (siRNA), are genetic materials that mediate the translation of genetic direction from genes to induce or inhibit specific protein production. Although the interest in RNA therapeutics is rising globally, the absence of an effective delivery system is an obstacle to the clinical application of RNA therapeutics. Additionally, immunogenicity, short duration of protein expression, unwanted enzymatic degradation, and insufficient cellular uptake could limit the therapeutic efficacy of RNA therapeutics. In this regard, novel platforms based on nanoparticles are crucial for delivering RNAs to the targeted site to increase efficiency without toxicity. In this review, the most recent status of nanoparticles as RNA delivery vectors, with a focus on polymeric nanoparticles, peptide-derived nanoparticles, inorganic nanoparticles, and hybrid nanoparticles, is discussed. These nanoparticular platforms can be utilized for safe and effective RNA delivery to augment therapeutic effects. Ultimately, RNA therapeutics encapsulated in nanoparticle-based carriers will be used to treat many diseases and save lives.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080 Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi 16419 Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi 16419 Republic of Korea
| |
Collapse
|
20
|
Naidoo S, Daniels A, Habib S, Singh M. Poly-L-Lysine-Lactobionic Acid-Capped Selenium Nanoparticles for Liver-Targeted Gene Delivery. Int J Mol Sci 2022; 23:ijms23031492. [PMID: 35163414 PMCID: PMC8835765 DOI: 10.3390/ijms23031492] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is currently regarded as the second leading cause of cancer-related mortality globally and is the sixth most diagnosed malignancy. Selenium nanoparticles (SeNPs) have attracted favorable attention as nanocarriers for gene therapy, as they possess beneficial antioxidant and anticancer properties. This study aimed to design, functionalize and characterize SeNPs to efficiently bind, protect and deliver pCMV-Luc DNA to hepatocellular carcinoma (HepG2) cells. The SeNPs were synthesized by ascorbic acid reduction and functionalized with poly-L-lysine (PLL) to stabilize and confer positive charges to the nanoparticles. The SeNPs were further decorated with lactobionic acid (LA) to target the asialoglycoprotein receptors abundantly expressed on the surface of the hepatocytes. All SeNPs were spherical, in the nanoscale range (<130 nm) and were capable of successfully binding, compacting and protecting the pDNA against nuclease degradation. The functionalized SeNP nanocomplexes exhibited minimal cytotoxicity (<30%) with enhanced transfection efficiency in the cell lines tested. Furthermore, the targeted SeNP (LA-PLL-SeNP) nanocomplex showed significant (* p < 0.05, ** p < 0.01, **** p < 0.0001) transgene expression in the HepG2 cells compared to the receptor-negative embryonic kidney (HEK293) cells, confirming receptor-mediated endocytosis. Overall, these functionalized SeNPs exhibit favorable features of suitable gene nanocarriers for the treatment of liver cancer.
Collapse
|
21
|
Dayani L, Dehghani M, Aghaei M, Taymouri S, Taheri A. Preparation and evaluation of targeted albumin lipid nanoparticles with lactobionic acid for targeted drug delivery of sorafenib in hepatocellular carcinoma. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Joseph C, Daniels A, Singh S, Singh M. Histidine-Tagged Folate-Targeted Gold Nanoparticles for Enhanced Transgene Expression in Breast Cancer Cells In Vitro. Pharmaceutics 2021; 14:53. [PMID: 35056949 PMCID: PMC8781941 DOI: 10.3390/pharmaceutics14010053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Nanotechnology has emerged as a promising treatment strategy in gene therapy, especially against diseases such as cancer. Gold nanoparticles (AuNPs) are regarded as favorable gene delivery vehicles due to their low toxicity, ease of synthesis and ability to be functionalized. This study aimed to prepare functionalized AuNPs (FAuNPs) and evaluate their folate-targeted and nontargeted pCMV-Luc-DNA delivery in breast cancer cells in vitro. CS was added to induce stability and positive charges to the AuNPs (Au-CS), histidine (Au-CS-His) to enhance endosomal escape and folic acid for folate-receptor targeting (Au-CS-FA-His). The FAuNP:pDNA nanocomplexes possessed favorable sizes (<135 nm) and zeta potentials (<-20 mV), strong compaction efficiency and were capable of pDNA protection against nuclease degradation. These nanocomplexes showed minimal cytotoxicity (>73% cell viability) and enhanced transgene activity. The influence of His was notable in the HER2 overexpressing SKBR3 cells, which produced higher gene expression. Furthermore, the FA-targeted nanocomplexes enhanced receptor-mediated endocytosis, especially in MCF-7 cells, as confirmed by the receptor competition assay. While the role of His may need further optimization, the results achieved suggest that these FAuNPs may be suitable gene delivery vehicles for breast cancer therapeutics.
Collapse
Affiliation(s)
- Calrin Joseph
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| | - Sooboo Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (C.J.); (A.D.)
| |
Collapse
|
23
|
Olawale F, Ariatti M, Singh M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2516. [PMID: 34684956 PMCID: PMC8539562 DOI: 10.3390/nano11102516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles (BNPs) have shown better biological potential compared to their monometallic counterparts owing to the synergistic effect produced by these alloys. In this study, selenium-capped silver nanoparticles (Ag@Se NPs) were synthesized using an Ocimum tenuiflorum extract. These BNPs were characterized using UV-visible, Fourier transform infrared spectroscopy, nanoparticle tracking analysis, electron microscopy and energy dispersive x-ray analysis. Response surface methodology was used to understand how extract volume and temperature influenced the zeta potential, hydrodynamic size and NP concentration. The phytoconstituents were identified using gas chromatography-mass spectrometry (GC-MS) and molecular docking studies were performed on B-DNA to determine possible genotoxicity. Antioxidant activities, in vitro cytotoxicity (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay), and genotoxicity (Allium cepa root cells) of these BNPs, were also evaluated. A surface plasmon resonance band around 420 nm confirmed BNP formation with significant quantities of silver and selenium. The Ag@Se NPs displayed good stability, dispersity, antioxidant activity, and compatibility at low concentrations but showed significant cytotoxicity and genotoxicity at high concentrations. Molecular docking analysis showed weak interactions between the plant constituents and B-DNA, suggesting no genotoxicity. These results provide an insight into the conditions required for optimal production of eco-friendly Ag@Se NPs with interesting biological properties.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (F.O.); (M.A.)
| |
Collapse
|
24
|
Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2021; 22:ijms22169082. [PMID: 34445784 PMCID: PMC8396516 DOI: 10.3390/ijms22169082] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease's cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson's and Alzheimer's diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life.
Collapse
|
25
|
Dendrimer-Coated Gold Nanoparticles for Efficient Folate-Targeted mRNA Delivery In Vitro. Pharmaceutics 2021; 13:pharmaceutics13060900. [PMID: 34204271 PMCID: PMC8235267 DOI: 10.3390/pharmaceutics13060900] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022] Open
Abstract
Messenger RNA (mRNA) is not an attractive candidate for gene therapy due to its instability and has therefore received little attention. Recent studies show the advantage of mRNA over DNA, especially in cancer immunotherapy and vaccine development. This study aimed to formulate folic-acid-(FA)-modified, poly-amidoamine-generation-5 (PAMAM G5D)-grafted gold nanoparticles (AuNPs) and to evaluate their cytotoxicity and transgene expression using the luciferase reporter gene (FLuc-mRNA) in vitro. Nanocomplexes were spherical and of favorable size. Nanocomplexes at optimum nanoparticle:mRNA (w/w) binding ratios showed good protection of the bound mRNA against nucleases and were well tolerated in all cell lines. Transgene expression was significantly (p < 0.0001) higher with FA-targeted, dendrimer-grafted AuNPs (Au:G5D:FA) in FA receptors overexpressing MCF-7 and KB cells compared to the G5D and G5D:FA NPs, decreasing significantly (p < 0.01) in the presence of excess competing FA ligand, which confirmed nanocomplex uptake via receptor mediation. Overall, transgene expression of the Au:G5D and Au:G5D:FA nanocomplexes exceeded that of G5D and G5D:FA nanocomplexes, indicating the pivotal role played by the inclusion of the AuNP delivery system. The favorable properties imparted by the AuNPs potentiated an increased level of luciferase gene expression.
Collapse
|
26
|
Venkatas J, Singh M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond) 2021; 16:1311-1328. [PMID: 34027672 DOI: 10.2217/nnm-2021-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer shows immense complexity at the epigenetic, genetic and cellular levels, limiting conventional treatment. Immunotherapy has revolutionized nanomedicine and rejuvenated the field of tumor immunology. Although several immunotherapeutic approaches have shown favorable clinical responses, their efficacies vary, with subsets of patients benefitting. The success of cancer immunotherapy requires the enhancement of cytokines and antitumor effector cell production and activation. Recently, the feasibility of nanoparticle-based cytokine approaches in tumor immunotherapy has been highlighted. Immunotherapeutic nanoparticle-based platforms form a novel strategy enabling researchers to co-deliver immunomodulatory agents, target tumors, improve pharmacokinetics and minimize collateral toxicity to healthy cells. This review looks at the potential of immunotherapy and nanotechnologically enhanced immunotherapeutic approaches for cervical cancer.
Collapse
Affiliation(s)
- Jeaneen Venkatas
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| | - Moganavelli Singh
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| |
Collapse
|
27
|
A novel therapeutic strategy for hepatocellular carcinoma: Immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol 2021; 96:107790. [PMID: 34162153 DOI: 10.1016/j.intimp.2021.107790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is an essential trace chemical element that is widely distributed worldwide. Se exerts its immunomodulatory and nutritional activities in the human body in the form of selenoproteins. Se has increasingly appeared as a potential trace element associated with many human diseases, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that Se and selenoproteins exert their immunomodulatory effects on HCC by regulating the molecules of oxidative stress, inflammation, immune response, cell proliferation and growth, angiogenesis, signaling pathways, apoptosis, and other processes in vitro cell studies and in vivo animal studies. Se concentrations are generally low in tissues of patients with HCC, such as blood, serum, scalp hair, and toenail. However, Se concentrations were higher in HCC patient tissues after Se supplementation than before supplementation. This review summarizes the significant relationship between Se and HCC, and details the role of Se as a novel immunomodulatory or immunotherapeutic approach against HCC.
Collapse
|