1
|
Shin Y, Schwartz JM, Engler AC, Jones B, Davydovich O, Kohl PA. Photoactivated Cyclic Polyphthalaldehyde Microcapsules for Payload Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43951-43960. [PMID: 39112427 PMCID: PMC11345721 DOI: 10.1021/acsami.4c07609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024]
Abstract
Microcapsules with a cyclic polyphthalaldehyde (cPPA) shell and oil core were fabricated by an emulsification process. The low ceiling temperature cPPA shell was made phototriggerable by incorporating a photoacid generator (PAG). Photoactivation of the PAG created a strong acid which catalyzed cPPA depolymerization, resulting in the release of the core payload, as quantified by 1H NMR. The high molecular weight cPPA (197 kDa) yielded uniform spherical microcapsules. The core diameter was 24.8 times greater than the cPPA shell thickness (2.4 to 21.6 μm). Nonionic bis(cyclohexylsulfonyl)diazomethane (BCSD) and N-hydroxynaphthalimide triflate (HNT) PAGs were used as the PAG in the microcapsule shells. BCSD required dual stimuli of UV radiation and post-exposure baking at 60 °C to activate cPPA depolymerization while room temperature irradiation of HNT resulted in instantaneous core release. A 300 s UV exposure (365 nm, 10.8 J/cm2) of the cPPA/HNT microcapsules resulted in 66.5 ± 9.4% core release. Faster core release was achieved by replacing cPPA with a phthalaldehyde/propanal copolymer. A 30 s UV exposure (365 nm, 1.08 J/cm2) resulted in 82 ± 13% core release for the 75 mol % phthalaldehyde/25 mol % propanal copolymer microcapsules. The photoresponsive shell provides a versatile polymer microcapsule technology for on-demand, controlled release of hydrophobic core payloads.
Collapse
Affiliation(s)
- Youngsu Shin
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jared M. Schwartz
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony C. Engler
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Brad Jones
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Oleg Davydovich
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Paul A. Kohl
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Baiocco D, Al-Sharabi M, Lobel BT, Cayre OJ, Routh AF, Zhang Z. Eco-Friendly Fungal Chitosan-Silica Dual-Shell Microcapsules with Tailored Mechanical and Barrier Properties for Potential Consumer Product Applications. ACS OMEGA 2024; 9:28385-28396. [PMID: 38973847 PMCID: PMC11223154 DOI: 10.1021/acsomega.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Commercial perfume microcapsules are becoming popular across the globe to fulfill consumers' demands. However, most of microcapsules rely on synthetic polymers and/or animal-sourced ingredients to form the shells. Therefore, replacement of the shell materials is imperative to minimize environmental microplastic pollution, as well as to meeting peoples' needs, religious beliefs, and lifestyles. Herein, we report a methodology to fabricate environmentally benign dual-shell (fungal chitosan-SiO2) microcapsules laden with fragrance oil (hexyl salicylate). Anionically stabilized oil droplets were coated with fungal chitosan via interfacial electrostatic interactions at pH 2, which were then covered by an inorganic coating of SiO2 produced via external alkaline mineralization of sodium silicate. Core-shell microcapsules with a spherical morphology were achieved. Under compression, dual-shell chitosan-SiO2 microcapsules yielded a mean nominal rupture stress of 3.0 ± 0.2 MPa, which was significantly higher than that of single-shell microcapsules (1.7 ± 0.2 MPa). After 20 days in neutral pH water, only ∼2.5% of the oil was released from dual-shell microcapsules, while single-shell microcapsules cumulatively released more than 10%. These findings showed that the additional SiO2 coating significantly enhanced both mechanical and barrier properties of microcapsules, which may be appealing for multiple commercial applications, including cosmetics and detergents.
Collapse
Affiliation(s)
- Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Benjamin T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
3
|
Ouyang P, Li Y, Wei W, Li Q, Liu J, MaYang, Li S, Zhou Y, Chen D, Geng Y, Huang X. Preparation and evaluation of microencapsulated delivery system of recombinant interferon alpha protein from rainbow trout. Int J Biol Macromol 2024; 273:132872. [PMID: 38942671 DOI: 10.1016/j.ijbiomac.2024.132872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/30/2024]
Abstract
Diseases caused by viruses pose a significant risk to the health of aquatic animals, for which there are presently no efficacious remedies. Interferon (IFN) serving as an antiviral agent, is frequently employed in clinical settings. Due to the unique living conditions of aquatic animals, traditional injection of interferon is cumbersome, time-consuming and labor-intensive. This study aimed to prepare IFN microcapsules through emulsion technique by using resistant starch (RS) and carboxymethyl chitosan (CMCS). Optimization was achieved using the Box-Behnken design (BBD) response surface technique, followed by the creation of microcapsules through emulsification. With RS at a concentration of 1.27 %, a water‑oxygen ratio of 3.3:7.4, CaCl2 at 13.67 %, CMCS at 1.04 %, the rate of encapsulation can escalate to 80.92 %. Rainbow trout infected with Infectious hematopoietic necrosis virus (IHNV) and common carp infected with Spring vireemia (SVCV) exhibited a relative survival rate (RPS) of 65 % and 60 % after treated with IFN microcapsules, respectively. Moreover, the microcapsules effectively reduced the serum AST levels and enhanced the expression of IFNα, IRF3, ISG15, MX1, PKR and Viperin in IHNV-infected rainbow trout and SVCV-infected carp. In conclusion, this integrated IFN microcapsule showed potential as an antiviral agent for treatment of viral diseases in aquaculture.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yankai Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wenyan Wei
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiaxing Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China
| | - MaYang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, Sichuan, China
| | - Shuhan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongheng Zhou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
5
|
Torres C, Valerio O, Mendonça RT, Pereira M. Influence of chitosan protonation degree in nanofibrillated cellulose/chitosan composite films and their morphological, mechanical, and surface properties. Int J Biol Macromol 2024; 267:131587. [PMID: 38631587 DOI: 10.1016/j.ijbiomac.2024.131587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.
Collapse
Affiliation(s)
- Camilo Torres
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Oscar Valerio
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile
| | - Regis Teixeira Mendonça
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile; Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Miguel Pereira
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Coronel 4190000, Chile.
| |
Collapse
|
6
|
An Z, Dong Y, Wang W, Wang J, Wu Z, Wang W, He Y, Bao G. Preparation of pH-sensitive carboxymethyl chitosan nanoparticles loaded with ginsenoside Rb1 and evaluation of drug release in vitro. Int J Biol Macromol 2024; 267:131487. [PMID: 38599430 DOI: 10.1016/j.ijbiomac.2024.131487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Oral absorption of ginsenoside Rb1 (Rb1) is often hindered by the gastrointestinal tract. Carboxymethyl chitosan deoxycholic acid loaded with ginsenoside Rb1 nanoparticles (CMDA@Rb1-NPs), were prepared as a delivery system using a self-assembly technique with amphipathic deoxycholic acid grafted carboxymethyl chitosan as the carrier, which improved the stability and embedding rate of Rb1. In addition, the CMDA@Rb1-NPs was encapsulated with sodium alginate by ion crosslinking method with additional layer (CMDAlg@Rb1-NPs). Scanning electron microscopy showed that the nanoparticles were spherical, evenly distributed, smooth and without obvious adhesion. By evaluating drug loading, entrapment efficiency, the encapsulation efficiency of Rb1 increased from 60.07 % to 72.14 % after grafting deoxycholic acid improvement and optimization. In vitro release results showed that the cumulative release of Rb1 by CMDAlg-NPs showed a pH dependent effect, which was <10 % in simulated gastric juice with pH 1.2, completely released with pH 7.4 for about 48 h. In addition, Rb1 and CMDAlg@Rb1-NPs had inhibitory effects on A549 cells, and the inhibitory effect of CMDAlg@Rb1-NPs was better. Therefore, all results indicated that CMDA/Alg@Rb1 nanoparticles might be a novel drug delivery system to improve the stability and embedding rate of Rb1, and has the potential to be applied in oral pharmaceutical preparations.
Collapse
Affiliation(s)
- Ziyuan An
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Yujia Dong
- Yangling Vocational and Technical College, Yangling, Shaanxi 712100, PR China
| | - Wanying Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Jiani Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Wenfei Wang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Microbiology, Xi'an 710043, PR China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an 710048, PR China.
| | - Guoqiang Bao
- Department of General Surgery, the Second Affiliated Hospital of Air Force Medical University,569 Xinsi Street, Xi'an 710038, PR China
| |
Collapse
|
7
|
Sorasitthiyanukarn FN, Muangnoi C, Rojsitthisak P, Rojsitthisak P. Stability and biological activity enhancement of fucoxanthin through encapsulation in alginate/chitosan nanoparticles. Int J Biol Macromol 2024; 263:130264. [PMID: 38368987 DOI: 10.1016/j.ijbiomac.2024.130264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
A response surface methodology based on the Box-Behnken design was employed to develop fucoxanthin (FX) delivery nanocarrier from alginate (ALG) and chitosan (CS). The FX-loaded ALG/CS nanoparticles (FX-ALG/CS-NPs) were fabricated using oil-in-water emulsification and ionic gelation. The optimal formulation consisted of an ALG:CS mass ratio of 0.015:1, 0.71 % w/v Tween™ 80, and 5 mg/mL FX concentrations. The resulting FX-ALG/CS-NPs had a size of 227 ± 23 nm, a zeta potential of 35.3 ± 1.7 mV, and an encapsulation efficiency of 81.2 ± 2.8 %. These nanoparticles exhibited enhanced stability under simulated environmental conditions and controlled FX release in simulated gastrointestinal fluids. Furthermore, FX-ALG/CS-NPs showed increased in vitro oral bioaccessibility, gastrointestinal stability, antioxidant activity, anti-inflammatory effect, and cytotoxicity against various cancer cells. The findings suggest that ALG/CS-NPs are effective nanocarriers for the delivery of FX in nutraceuticals, functional foods, and pharmaceuticals.
Collapse
Affiliation(s)
- Feuangthit Niyamissara Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Neethu Das P, Govind Raj K. Chitosan coated graphene oxide incorporated sodium alginate hydrogel beads for the controlled release of amoxicillin. Int J Biol Macromol 2024; 254:127837. [PMID: 37923036 DOI: 10.1016/j.ijbiomac.2023.127837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Biopolymers are crucial in pharmaceuticals, particularly for controlled drug release. In this study, we loaded the broad-spectrum antibacterial drug amoxicillin into sodium alginate, a well-known biopolymer. Graphene oxide was incorporated into the composite, and the hydrogel beads were coated with chitosan for its mucoadhesive properties. Various composites were formulated by adjusting the weight percentage of graphene oxide (GO). The fabricated beads demonstrated controlled and sustained drug release, with 98 % of the loaded drug molecules released over 24 h at gastric pH. The antibacterial test using the disc diffusion technique confirmed the drug release, exhibiting greater effectiveness against the gram-positive bacterium S. aureus than the gram-negative bacterium E. coli. The drug release data were optimized using zero order, first order, Higuchi, and Korsmeyer-Peppas models. The experimental data were best fit to the Korsmeyer-Peppas model with a relatively higher correlation coefficient value. Biocompatibility was evaluated through a cell viability test using mouse fibroblast cell lines (L929). The MTT viability assay confirmed high levels of cytocompatibility, even at higher concentrations (100 μg/mL), with 98.15 % viable cells. These results highlight the potential of the fabricated beads as an effective amoxicillin drug delivery system with biomedical applications.
Collapse
Affiliation(s)
- P Neethu Das
- Department of Chemistry, Malabar Christian College, Calicut, Kerala 673001, India
| | - K Govind Raj
- Department of Chemistry, Malabar Christian College, Calicut, Kerala 673001, India.
| |
Collapse
|
9
|
Sharma V, Lal Gupta G, Sharma M. Oxidative Coupling Assembly Induced Bio-engineered Quercetin Microspheres for the Gastrosparing Delivery of Diclofenac Sodium. Curr Drug Deliv 2024; 21:582-591. [PMID: 36892026 DOI: 10.2174/1567201820666230308100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/13/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE The study aimed to develop microspheres of quercetin by oxidative coupling assembly and these microspheres were used to deliver diclofenac sodium without causing gastrotoxicity. METHODS The oxidative coupling assembly of quercetin was carried out in the presence of copper sulfate to yield quercetin microspheres. The microsphere of quercetin was loaded with diclofenac sodium (QP-Diclo). The carrageenan induced paw edema in rats was used for anti-inflammatory action was studied by using and acetic acid-induced writhing in mice was used to study the analgesic potential of the QP loaded microspheres. The ulcerogenecity and gastrotoxicity comparison was made between diclofenac and QP-Diclo. RESULTS The oxidative coupling assembly of quercetin resulted in microspheres of 10-20 μm in size, which were loaded with diclofenac sodium (QP-Diclo). The marked anti-inflammatory activity was observed by QP-Diclo treatment using carrageenan induced paw edema (in rats) and better analgesic activity than diclofenac sodium in mice. The administration of QP-Diclo significantly elevated the diminished overall nitrite/nitrate extent and thiobarbituric acid reactive and significantly increased the diminished superoxide dismutase activity in comparison to diclofenac sodium in gastric mucosa. CONCLUSION The results suggested that dietary polyphenol quercetin can be converted to microspheres by oxidative coupling assembly and can be used to deliver diclofenac sodium without causing gastrotoxicity.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, M. M. Deemed to be University, Mullana, 133207, Haryana India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur, 425405, Maharashtra, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University, Delhi Campus, New Delhi, India
| |
Collapse
|
10
|
Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Eshaghi Malekshah R, Rahmatabadi S. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu(II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol 2023; 253:127297. [PMID: 37813210 DOI: 10.1016/j.ijbiomac.2023.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Hydrogels based on chitosan or alginate biopolymers are believed to be desirable for covering skin lesions. In this research, we explored the potential of a new composite hydrogels series of sodium alginate (Alg) filled with cross-linked chitosan to use as hydrogel wound dressings. Cross-linked chitosan (CSPN) was synthesized by Schiff-base reaction with aldehydated cyclophosphazene, and its Cu(II) complex was manufactured and identified. Then, their powder suspension and Alg were transformed into hydrogel via ion-crosslinking with Ca2+. The hydrogel constituents were investigated by using FTIR, XRD, rheological techniques, and thermal analysis including TGA (DTG) and DSC. Moreover, structure optimization calculations were performed with the Material Studio 2017 program based on DFT-D per Dmol3 module. Examination of Alg's interactions with CSPN and CSPN-Cu using this module demonstrated that Alg molecules can be well adsorbed to the particle's surface. By changing the dosage of CSPN and CSPN-Cu, the number and size of pores, swelling rate, degradation behavior, protein absorption rate, cytotoxicity and blood compatibility were changed significantly. Subsequently, we employed erythromycin as a model drug to assess the entrapment efficiency, loading capacity, and drug release rate. FITC staining was selected to verify the hydrogels' intracellular uptake. Assuring the cytocompatibility of Alg-based hydrogels was approved by assessing the survival rate of fibroblast cells using MTT assay. However, the presence of Cu(II) in the developed hydrogels caused a significant antibacterial effect, which was comparable to the antibiotic-containing hydrogels. Our findings predict these porous, biodegradable, and mechanically stable hydrogels potentially have a promising future in the wound healing as antibiotic-free antibacterial dressings.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahnaz Mohammadpour
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Soheil Rahmatabadi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Putro JN, Soetaredjo FE, Lunardi VB, Irawaty W, Yuliana M, Santoso SP, Puspitasari N, Wenten IG, Ismadji S. Polysaccharides gums in drug delivery systems: A review. Int J Biol Macromol 2023; 253:127020. [PMID: 37741484 DOI: 10.1016/j.ijbiomac.2023.127020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Natania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institute of Technology Bandung (ITB), Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
12
|
Antezana PE, Municoy S, Ostapchuk G, Catalano PN, Hardy JG, Evelson PA, Orive G, Desimone MF. 4D Printing: The Development of Responsive Materials Using 3D-Printing Technology. Pharmaceutics 2023; 15:2743. [PMID: 38140084 PMCID: PMC10747900 DOI: 10.3390/pharmaceutics15122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Additive manufacturing, widely known as 3D printing, has revolutionized the production of biomaterials. While conventional 3D-printed structures are perceived as static, 4D printing introduces the ability to fabricate materials capable of self-transforming their configuration or function over time in response to external stimuli such as temperature, light, or electric field. This transformative technology has garnered significant attention in the field of biomedical engineering due to its potential to address limitations associated with traditional therapies. Here, we delve into an in-depth review of 4D-printing systems, exploring their diverse biomedical applications and meticulously evaluating their advantages and disadvantages. We emphasize the novelty of this review paper by highlighting the latest advancements and emerging trends in 4D-printing technology, particularly in the context of biomedical applications.
Collapse
Affiliation(s)
- Pablo Edmundo Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Sofia Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| | - Gabriel Ostapchuk
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
| | - Paolo Nicolás Catalano
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Nodo Constituyentes, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina; (G.O.); (P.N.C.)
- Departamento de Micro y Nanotecnología, Gerencia de Desarrollo Tecnológico y Proyectos Especiales, Gerencia de Área de Investigación, Desarrollo e Innovación, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499 (B1650KNA), San Martín, Buenos Aires 8400, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica Instrumental, Junín 954, Buenos Aires 1113, Argentina
| | - John G. Hardy
- Materials Science Institute, Lancaster University, Lancaster LA1 4YB, UK;
- Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
| | - Pablo Andrés Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Buenos Aires 1428, Argentina;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Piso 3, Buenos Aires 1113, Argentina; (P.E.A.); (S.M.)
| |
Collapse
|
13
|
Wei N, Lv Z, Meng X, Liang Q, Jiang T, Sun S, Li Y, Feng J. Sodium alginate-carboxymethyl chitosan hydrogels loaded with difenoconazole for pH-responsive release to control wheat crown rot. Int J Biol Macromol 2023; 252:126396. [PMID: 37625754 DOI: 10.1016/j.ijbiomac.2023.126396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Increasing concern about environmental pollution has driven the development of controlled release formulations for agrochemicals. Due to the advantages of degradability and responsiveness to environmental stimuli, polysaccharide-based hydrogel is an ideal carrier for agrochemicals controlled release. In this study, a method-easy polysaccharide hydrogel for controlled release of difenoconazole (DZ) was prepared with sodium alginate (SA) and carboxymethyl chitosan (CMCS). Due to its three-dimensional crosslinked mesh structure, the prepared hydrogels (CSDZ) showed an agrochemical load capacity of 9.03 % and an encapsulation efficiency of 68.64 %. The release rate is faster in alkaline solution, followed by neutral solution, and slowest in an acid environment, which is consistent with the swelling behavior. Furthermore, leaching studies showed that CSDZ hydrogels have excellent protective properties for encapsulated agrochemicals. Compared with technical DZ, the results of in vitro and pot antifungal testing showed that CSDZ had a better control effect against wheat crown rot (Fusarium pseudograminearum). Safety assessment studies indicated that CSDZ hydrogels exhibit good biocompatibility on nontargeted organisms (Daphnia magna, zebrafish and Eisenia fetida) and wheat. This study aims to provide a potentially promising approach for the preparation and application of biocompatible polysaccharide-based hydrogels for agrochemical-controlled release in sustainable disease management.
Collapse
Affiliation(s)
- Nuo Wei
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ze Lv
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qianwei Liang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianzhen Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Kang J, Zajforoushan Moghaddam S, Thormann E. Self-Cross-Linkable Chitosan-Alginate Complexes Inspired by Mussel Glue Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15499-15506. [PMID: 37870990 DOI: 10.1021/acs.langmuir.3c01750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this study, mussel-inspired chemistry, based on catechol-amine reactions, was adopted to develop self-cross-linkable chitosan-alginate (Chi-Alg) complexes. To do so, the biopolymers were each substituted with ∼20% catechol groups (ChiC and AlgC), and then four complex combinations (Chi-Alg, ChiC-Alg, Chi-AlgC, ChiC-AlgC) were prepared at the surface and in bulk solution. Based on QCM-D and lap shear adhesion tests, the complex with catechol only on Chi (ChiC-Alg) did not show a significant variation from the control complex (Chi-Alg). Conversely, the complexes with catechol on alginate (Chi-AlgC and ChiC-AlgC) rendered a self-cross-linking property and enhanced cohesive properties.
Collapse
Affiliation(s)
- Junjie Kang
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Rusu L, Suceveanu EM, Blaga AC, Nedeff FM, Șuteu D. Insights into Recent Advances of Biomaterials Based on Microbial Biomass and Natural Polymers for Sustainable Removal of Pharmaceuticals Residues. Polymers (Basel) 2023; 15:2923. [PMID: 37447569 DOI: 10.3390/polym15132923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Pharmaceuticals are acknowledged as emerging contaminants in water resources. The concentration of pharmaceutical compounds in the environment has increased due to the rapid development of the pharmaceutical industry, the increasing use of human and veterinary drugs, and the ineffectiveness of conventional technologies to remove pharmaceutical compounds from water. The application of biomaterials derived from renewable resources in emerging pollutant removal techniques constitutes a new research direction in the field. In this context, the article reviews the literature on pharmaceutical removal from water sources using microbial biomass and natural polymers in biosorption or biodegradation processes. Microorganisms, in their active or inactive form, natural polymers and biocomposites based on inorganic materials, as well as microbial biomass immobilized or encapsulated in polymer matrix, were analyzed in this work. The review examines the benefits, limitations, and drawbacks of employing these biomaterials, as well as the prospects for future research and industrial implementation. From these points of view, current trends in the field are clearly reviewed. Finally, this study demonstrated how biocomposites made of natural polymers and microbial biomass suggest a viable adsorbent biomaterial for reducing environmental pollution that is also efficient, inexpensive, and sustainable.
Collapse
Affiliation(s)
- Lăcrămioara Rusu
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Elena-Mirela Suceveanu
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Alexandra-Cristina Blaga
- Faculty of Chemical Engineering an Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
| | - Florin Marian Nedeff
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Daniela Șuteu
- Faculty of Chemical Engineering an Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
| |
Collapse
|
16
|
Kaur M, Sharma A, Puri V, Aggarwal G, Maman P, Huanbutta K, Nagpal M, Sangnim T. Chitosan-Based Polymer Blends for Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15092028. [PMID: 37177176 PMCID: PMC10181148 DOI: 10.3390/polym15092028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Polymers have been widely used for the development of drug delivery systems accommodating the regulated release of therapeutic agents in consistent doses over a long period, cyclic dosing, and the adjustable release of both hydrophobic and hydrophilic drugs. Nowadays, polymer blends are increasingly employed in drug development as they generate more promising results when compared to those of homopolymers. This review article describes the recent research efforts focusing on the utilization of chitosan blends with other polymers in an attempt to enhance the properties of chitosan. Furthermore, the various applications of chitosan blends in drug delivery are thoroughly discussed herein. The literature from the past ten years was collected using various search engines such as ScienceDirect, J-Gate, Google Scholar, PubMed, and research data were compiled according to the various novel carrier systems. Nanocarriers made from chitosan and chitosan derivatives have a positive surface charge, which allows for control of the rate, duration, and location of drug release in the body, and can increase the safety and efficacy of the delivery system. Recently developed nanocarriers using chitosan blends have been shown to be cost-effective, more efficacious, and prolonged release carriers that can be incorporated into suitable dosage forms.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Geeta Aggarwal
- Department of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | | | | | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
17
|
Tan M, Zhang X, Sun S, Cui G. Nanostructured steady-state nanocarriers for nutrients preservation and delivery. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:31-93. [PMID: 37722776 DOI: 10.1016/bs.afnr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food bioactives possess specific physiological benefits of preventing certain diet-related chronic diseases or maintain human health. However, the limitations of the bioactives are their poor stability, lower water solubility and unacceptable bioaccessibility. Structure damage or degradation is often found for the bioactives under certain environmental conditions like high temperature, strong light, extreme pH or high oxygen concentration during food processing, packaging, storage and absorption. Nanostructured steady-state nanocarriers have shown great potential in overcoming the drawbacks for food bioactives. Various delivery systems including solid form delivery system, liquid form delivery system and encapsulation technology have been developed. The embedded food nutrients can largely decrease the loss and degradation during food processing, packaging and storage. The design and application of stimulus and targeted delivery systems can improve the stability, bioavailability and efficacy of the food bioactives upon oral consumption due to enzymatic degradation in the gastrointestinal tract. The food nutrients encapsulated in the smart delivery system can be well protected against degradation during oral administration, thus improving the bioavailability and releazing controlled or targeted release for food nutrients. The encapsulated food bioactives show great potential in nutrition therapy for sub-health status and disease. Much effort is required to design and prepare more biocompatible nanostructured steady-state nanocarriers using food-grade protein or polysaccharides as wall materials, which can be used in food industry and maintain the human health.
Collapse
Affiliation(s)
- Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China.
| | - Xuedi Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Shan Sun
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| | - Guoxin Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P.R. China
| |
Collapse
|
18
|
Study of Hydroxypropyl β-Cyclodextrin and Puerarin Inclusion Complexes Encapsulated in Sodium Alginate-Grafted 2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid Hydrogels for Oral Controlled Drug Delivery. Gels 2023; 9:gels9030246. [PMID: 36975695 PMCID: PMC10048200 DOI: 10.3390/gels9030246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Puerarin has been reported to have anti-inflammatory, antioxidant, immunity enhancement, neuroprotective, cardioprotective, antitumor, and antimicrobial effects. However, due to its poor pharmacokinetic profile (low oral bioavailability, rapid systemic clearance, and short half-life) and physicochemical properties (e.g., low aqueous solubility and poor stability) its therapeutic efficacy is limited. The hydrophobic nature of puerarin makes it difficult to load into hydrogels. Hence, hydroxypropyl-β-cyclodextrin (HP-βCD)-puerarin inclusion complexes (PIC) were first prepared to enhance solubility and stability; then, they were incorporated into sodium alginate-grafted 2-acrylamido-2-methyl-1-propane sulfonic acid (SA-g-AMPS) hydrogels for controlled drug release in order to increase bioavailability. The puerarin inclusion complexes and hydrogels were evaluated via FTIR, TGA, SEM, XRD, and DSC. Swelling ratio and drug release were both highest at pH 1.2 (36.38% swelling ratio and 86.17% drug release) versus pH 7.4 (27.50% swelling ratio and 73.25% drug release) after 48 h. The hydrogels exhibited high porosity (85%) and biodegradability (10% in 1 week in phosphate buffer saline). In addition, the in vitro antioxidative activity (DPPH (71%), ABTS (75%), and antibacterial activity (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) indicated the puerarin inclusion complex-loaded hydrogels had antioxidative and antibacterial capabilities. This study provides a basis for the successful encapsulation of hydrophobic drugs inside hydrogels for controlled drug release and other purposes.
Collapse
|
19
|
Naznin A, Dhar PK, Dutta SK, Chakrabarty S, Karmakar UK, Kundu P, Hossain MS, Barai HR, Haque MR. Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15030732. [PMID: 36986593 PMCID: PMC10055761 DOI: 10.3390/pharmaceutics15030732] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, polymer-supported magnetic iron oxide nanoparticles (MIO-NPs) have gained a lot of attention in biomedical and healthcare applications due to their unique magnetic properties, low toxicity, cost-effectiveness, biocompatibility, and biodegradability. In this study, waste tissue papers (WTP) and sugarcane bagasse (SCB) were utilized to prepare magnetic iron oxide (MIO)-incorporated WTP/MIO and SCB/MIO nanocomposite particles (NCPs) based on in situ co-precipitation methods, and they were characterized using advanced spectroscopic techniques. In addition, their anti-oxidant and drug-delivery properties were investigated. Field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analyses revealed that the shapes of the MIO-NPs, SCB/MIO-NCPs, and WTP/MIO-NCPs were agglomerated and irregularly spherical with a crystallite size of 12.38 nm, 10.85 nm, and 11.47 nm, respectively. Vibrational sample magnetometry (VSM) analysis showed that both the NPs and the NCPs were paramagnetic. The free radical scavenging assay ascertained that the WTP/MIO-NCPs, SCB/MIO-NCPs, and MIO-NPs exhibited almost negligible antioxidant activity in comparison to ascorbic acid. The swelling capacities of the SCB/MIO-NCPs and WTP/MIO-NCPs were 155.0% and 159.5%, respectively, which were much higher than the swelling efficiencies of cellulose-SCB (58.3%) and cellulose-WTP (61.6%). The order of metronidazole drug loading after 3 days was: cellulose-SCB < cellulose-WTP < MIO-NPs < SCB/MIO-NCPs < WTP/MIO-NCPs, whereas the sequence of the drug-releasing rate after 240 min was: WTP/MIO-NCPs < SCB/MIO-NCPs < MIO-NPs < cellulose-WTP < cellulose-SCB. Overall, the results of this study showed that the incorporation of MIO-NPs in the cellulose matrix increased the swelling capacity, drug-loading capacity, and drug-releasing time. Therefore, cellulose/MIO-NCPs obtained from waste materials such as SCB and WTP can be used as a potential vehicle for medical applications, especially in a metronidazole drug delivery system.
Collapse
Affiliation(s)
- Arifa Naznin
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Palash Kumar Dhar
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Correspondence: (P.K.D.); (H.R.B.)
| | | | | | | | - Pritam Kundu
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Muhammad Sarwar Hossain
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (P.K.D.); (H.R.B.)
| | - Md. Rezaul Haque
- Chemistry Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
20
|
Hou R, Zhou J, Song Z, Zhang N, Huang S, Kaziem AE, Zhao C, Zhang Z. pH-responsive λ-cyhalothrin nanopesticides for effective pest control and reduced toxicity to Harmonia axyridis. Carbohydr Polym 2023; 302:120373. [PMID: 36604051 DOI: 10.1016/j.carbpol.2022.120373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.g., emulsifiable concentrate, EC), LC@O-CMCS/PU showed better leaf-surface adhesion. On the dried pesticide-applied surfaces, the acute contact toxicity of LC@O-CMCS/PU to Harmonia axyridis (H. axyridis) was nearly 20 times lower than that of LC EC. Due to the slow-releasing property of LC@O-CMCS/PU, only 16.38 % of LC was released at 48 h in dew and effectively reduced the toxicity of dew. On the pesticide-applied leaves with dew, exposure to the LC (EC) caused 86.66 % mortality of H. axyridis larvae significantly higher than the LC@O-CMCS/PU, which was only 16.66 % lethality. Additionally, quantitative analysis demonstrated 11.33 mg/kg of λ-cyhalothrin in the dew on LC@O-CMCS/PU lower than LC (EC) with 4.54 mg/kg. In summary, LC@O-CMCS/PU effectively improves the safety of λ-cyhalothrin to H. axyridis and has great potential to be used in pest control combining natural enemies and chemical pesticides.
Collapse
Key Words
- H. axyridis
- Low toxicity
- PubChem CID: 14030006, castor oil
- PubChem CID: 14798, sodium hydroxide
- PubChem CID: 16682738, dibutyltin dilaurate
- PubChem CID: 169132, isophorone diisocyanate
- PubChem CID: 300, chloroacetic acid
- PubChem CID: 3776, isopropyl alcohol
- PubChem CID: 442424, genipin
- PubChem CID: 443046, λ-cyhalothrin
- PubChem CID: 6569, methyl ethyl ketone
- PubChem CID: 7767, N-methyl diethanolamine
- pH-controlled release
- λ-Cyhalothrin
Collapse
Affiliation(s)
- Ruiquan Hou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jingtong Zhou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zixia Song
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Ning Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Amir E Kaziem
- Department of Environmental Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Chen Zhao
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Yang D, Gong L, Li Q, Fan B, Ma C, He YC. Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics. Int J Biol Macromol 2023; 227:524-534. [PMID: 36526065 DOI: 10.1016/j.ijbiomac.2022.12.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Using chitosan (CTS) and sodium carboxymethyl cellulose (CMCNa) as raw biobased materials, polyelectrolyte complex (PEC), which is the product of strong electrostatic interaction between two bio-based polyelectrolytes with opposite charges, was attempted to prepare. To enlarge the reactive contact area between CTS and CMCNa, the crosslinked vacuolar structure of PEC was prepared without addition of cross-linked agent. The preparation conditions had a significant impact on the yield of PEC and the bibulous rate of PEC. When pH, mass ratio of CMC-Na-to-CTS, stirring speed and reaction system temperature were 5, 1:2 [(1 wt% CMCNa, 2 wt% CTS), CMC-Na:CTS = 1:1 (v/v)], 800 rpm, 2 min and 25 °C, the yield of PEC reached 71.2 %. The prepared PEC was characterized by XRD and FT-IR. Afterwards, the antibacterial performance of PEC was examined. The prepared PEC had certain bacteriostatic effect on gram-positive and gram-negative bacteria. The bacteriostasis ratios of PEC against Escherichia coli and Staphylococcus aureus were 18.7 % and 31.3 %, respectively. By controlling the combination parameters of the preparation system, an effective strategy was successfully developed for preparation of biobased PEC with bacteriostatic and crosslinked vacuolar structure through simple physical blending without the application of additional crosslinker.
Collapse
Affiliation(s)
- Dong Yang
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Lei Gong
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Qing Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Bo Fan
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu Province, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
22
|
Sorasitthiyanukarn FN, Muangnoi C, Gomez CB, Suksamrarn A, Rojsitthisak P, Rojsitthisak P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020472. [PMID: 36839794 PMCID: PMC9959490 DOI: 10.3390/pharmaceutics15020472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.
Collapse
Affiliation(s)
- Feuangthit N. Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Clinton B. Gomez
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4221; Fax: +662-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using 1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted against Escherichia coli (E coli) and Staphylococcus aureus (S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth of S. aureus up to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
24
|
Binesh N, Farhadian N, Mohammadzadeh A, Karimi M. Dual‐drug delivery of sodium ceftriaxone and metronidazole by applying salt‐assisted chitosan nanoparticles: Stability, drug release, and time‐kill assay study against
Bacteroides fragilis. J Appl Polym Sci 2023. [DOI: 10.1002/app.53284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Nafiseh Binesh
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering Ferdowsi University of Mashhad Mashhad Iran
| | - Alireza Mohammadzadeh
- Microbiology Department, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran
| | - Mohammad Karimi
- Emergency Medicine Department Birjand University of Medical Sciences Birjand Iran
| |
Collapse
|
25
|
Eltaweil AS, Ahmed MS, El-Subruiti GM, Khalifa RE, Omer AM. Efficient loading and delivery of ciprofloxacin by smart alginate/carboxylated graphene oxide/aminated chitosan composite microbeads: in vitro release and kinetic studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
26
|
Abbasi S, Ghaffari S, Safa N. Porous Silica as Drug Carrier for Controlled Delivery of Sulfasalazine: The Effect of Alginate-N, O-Carboxymethyl Chitosan Gel Coating and Amine Functionalization. Appl Biochem Biotechnol 2022; 195:3719-3732. [DOI: 10.1007/s12010-022-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/28/2022]
|
27
|
Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var. capitata Extract for Peptic Ulcer Treatment. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Xiao Z, Sun P, Liu H, Zhao Q, Niu Y, Zhao D. Stimulus responsive microcapsules and their aromatic applications. J Control Release 2022; 351:198-214. [PMID: 36122896 DOI: 10.1016/j.jconrel.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huiqin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
29
|
Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: isotherms, kinetics and thermodynamics studies. Sci Rep 2022; 12:12972. [PMID: 35902774 PMCID: PMC9334362 DOI: 10.1038/s41598-022-17305-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
In this investigation, Kaolin (K) impregnated aminated chitosan (AM-CTS) composite beads were fabricated with multi-features including low-cost, high performance, renewable and ease of separation for adsorption of anionic Congo red (CR) dye. Characterization tools such as FTIR, XRD, SEM, TGA, BET, XPS and Zeta potential were thoroughly employed to confirm the successful formulation process. The results revealed that K@ AM-CTS composite beads displayed higher specific surface area (128.52 m2/g), while the thermal stability was prominently improved compared to pure AM-CTS. In addition, the adsorption equilibrium of CR dye was accomplished rapidly and closely gotten within 45 min. The removal efficiency was significantly enriched and reached 90.7% with increasing kaolin content up to 0.75%, compared to 20.3 and 58% for pristine kaolin and AM-CTS, respectively. Moreover, the adsorption process obeyed the pseudo-first order kinetic model, while data were agreed with the Freundlich isotherm model with a maximum adsorption capacity reached 104 mg/g at pH 6. Furthermore, D–R isotherm model demonstrated the physical adsorption process of CR dye, which includes the electrostatic interactions, ion exchange and H-bonding. Thermodynamics evidenced the spontaneous and endothermic nature of the adsorption process. Interestingly, the developed K@AM-CTS composites beads showed better reusability for eight consecutive cycles, suggesting their feasible applicability for adsorptive removal anionic dyes from polluted aquatic bodies.
Collapse
|
30
|
Pudziuvelyte L, Siauruseviciute A, Morkuniene R, Lazauskas R, Bernatoniene J. Influence of Technological Factors on the Quality of Chitosan Microcapsules with Boswellia serata L. Essential Oil. Pharmaceutics 2022; 14:pharmaceutics14061259. [PMID: 35745831 PMCID: PMC9227605 DOI: 10.3390/pharmaceutics14061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Essential oils contain many volatile compounds that are not stable and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect Boswellia serrata L. essential oil from environmental factors by encapsulation and determine the influence of chitosan concentration and types (2%, 4%; medium and high molecular weights), essential oil concentration, different emulsifiers (Tween and Span), and technological factors (stirring time, launch height, drip rate) on the physical parameters, morphology, texture, and other parameters of the generated gels, emulsions, and microcapsules. For the first time, Boswellia serrata L. essential oil microcapsules with chitosan were prepared by coacervation. Hardness, consistency, stickiness, viscosity, and pH of chitosan gels were tested. Freshly obtained microcapsules were examined for moisture, hardness, resistance to compression, size, and morphology. Results show that different molecular weights and concentrations of chitosan affected gel hardness, consistency, stickiness, viscosity, mobility, and adhesion. An increase in chitosan concentration from 2% to 4% significantly changed the appearance of the microcapsules. It was found that spherical microcapsules were formed when using MMW and HMW 80/1000 chitosan. Chitosan molecular weight, concentration, essential oil concentration, and stirring time all had an impact on the hardness of the microcapsules and their resistance to compression.
Collapse
Affiliation(s)
- Lauryna Pudziuvelyte
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Aiste Siauruseviciute
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Ramune Morkuniene
- Department of Drug Chemistry, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Robertas Lazauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, A. Mickeviciaus 7, LT-44307 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
- Correspondence:
| |
Collapse
|
31
|
Abd El-Monaem EM, Eltaweil AS, Elshishini HM, Hosny M, Abou Alsoaud MM, Attia NF, El-Subruiti GM, Omer AM. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. ARAB J CHEM 2022; 15:103743. [PMID: 35126797 PMCID: PMC8800501 DOI: 10.1016/j.arabjc.2022.103743] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and λmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interactions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163, Horrya Avenue, Alexandria, Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed M Abou Alsoaud
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
32
|
Multi-Responsive Optimization of Novel pH-Sensitive Hydrogel Beads Based on Basil Seed Mucilage, Alginate, and Magnetic Particles. Gels 2022; 8:gels8050274. [PMID: 35621571 PMCID: PMC9141934 DOI: 10.3390/gels8050274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Conventional drug delivery systems often cause side effects and gastric degradation. Novel drug delivery systems must be developed to decrease side effects and increase the efficacy of drug delivery. This research aimed to fabricate hydrogel beads for use as a drug delivery system based on basil seed mucilage (BSM), sodium alginate (SA), and magnetic particles (MPs). The Taguchi method and Grey relational analysis were used for the design and optimization of the hydrogel beads. Three factors, including BSM, SA, and MPs at four levels were designed by L-16 orthogonal arrays. BSM was the main factor influencing bead swelling, drug release rate at pH 7.4, and release of antioxidants at pH 1.2 and 7.4. In addition, SA and MPs mainly affected drug loading and drug release rate in acidic medium, respectively. Grey relational analysis indicated that the composition providing optimal overall properties was 0.2 vol% BSM, 0.8 vol% SA, and 2.25 vol% MPs. Based on the findings of this work, BSM/SA/MPs hydrogel beads have the potential to be used as a pH-sensitive alternative material for drug delivery in colon-specific systems.
Collapse
|
33
|
Cellulose, clay and sodium alginate composites for the removal of methylene blue dye: Experimental and DFT studies. Int J Biol Macromol 2022; 209:576-585. [PMID: 35405153 DOI: 10.1016/j.ijbiomac.2022.04.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 01/11/2023]
Abstract
Cellulose/clay/sodium alginate composites were prepared and employed for the removal of methylene blue (MB) dye. Cellulose was extracted from a paper mill waste and used for composite preparation with sodium alginate (Na-Alg) and clay. MB dye removal was analyzed at different operating conditions (pH, initial concentration, temperature, composite dose). This dye was adsorbed up to 90% for an equilibrium time of 60 min at optimum level of adsorbent dose (0.05 g), temperature (30 °C) and pH (i.e., 7 and 11 for cellulose-Na-Alg and cellulose-Na-Alg-clay, respectively). Kinetics and isotherms of MB adsorption were quantified and modeled. Results showed that MB dye adsorption data followed the pseudo-first order kinetics and a statistical physics model was used to analyze the adsorption mechanism. Thermodynamic calculation revealed that the MB dye adsorption on these composites was an exothermic, spontaneous and feasible process. The composites were regenerated with HCl thus contributing to their reutilization in subsequent adsorption cycles. The DFT (density functional theory) calculations were executed to explain the interactions responsible for the adsorption of MB dye on the composites. Results revealed that the Na-Alg-cellulose composites were effective for the MB dye removal. Therefore, these composites can be considered as low-cost alternative adsorbents for the pollution remediation caused by dyes in industrial effluents and wastewater.
Collapse
|
34
|
Chopra L, Thakur KK, Chohan JS, Sharma S, Ilyas RA, Asyraf MRM, Zakaria SZS. Comparative Drug Release Investigations for Diclofenac Sodium Drug (DS) by Chitosan-Based Grafted and Crosslinked Copolymers. MATERIALS 2022; 15:ma15072404. [PMID: 35407737 PMCID: PMC9000032 DOI: 10.3390/ma15072404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
The hydrogels responding to pH synthesized by graft copolymerization only and then concurrent grafting and crosslinking of monomer N-isopropyl acrylamide (NIPAAM) and binary comonomers acrylamide, acrylic acid and acrylonitrile (AAm, AA and AN) onto chitosan support were explored for the percent upload and release study for anti-inflammatory diclofenac sodium drug (DS), w.r.t. time and pH. Diclofenac sodium DS was seized in polymeric matrices by the equilibration process. The crosslinked-graft copolymers showed the highest percent uptake than graft copolymers (without crosslinker) and chitosan itself. The sustainable release of the loaded drug was studied with respect to time at pH 2.2, 7.0, 7.4 and 9.4. Among graft copolymers (without crosslinking), Chit-g-polymer (NIPAAM-co-AA) and Chit-g-polymer (NIPAAM-co-AN) exhibited worthy results for sustainable drug deliverance, whereas Crosslink-Chit-g-polymer (NIPAAM-co-AA) and Crosslink-Chit-g-polymer (NIPAAM-co-AAm) presented the best results for controlled/sustained release of diclofenac sodium DS with 93.86 % and 96.30 % percent release, respectively, in 6 h contact time. Therefore, the grafted and the crosslinked graft copolymers of the chitosan showed excellent delivery devices for the DS with sustainable/prolonged release in response to pH. Drug release kinetics was studied using Fick’s law. The kinetic study revealed that polymeric matrices showed the value of n as n > 1.0, hence drug release took place by non-Fickian diffusion. Hence, the present novel findings showed the multidirectional drug release rate. The morphological changes due to interwoven network structure of the crosslinked are evident by the Scanning electron microscopy (SEM) analysis.
Collapse
Affiliation(s)
- Lalita Chopra
- Department of Chemistry, University Institute of Sciences (UIS), Chandigarh University, Gharuan, Mohali 140413, Punjab, India; (L.C.); (K.K.T.)
| | - Kamal Kishor Thakur
- Department of Chemistry, University Institute of Sciences (UIS), Chandigarh University, Gharuan, Mohali 140413, Punjab, India; (L.C.); (K.K.T.)
| | - Jasgurpreet Singh Chohan
- Mechanical Engineering Department, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India;
| | - Shubham Sharma
- Mechanical Engineering Department, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India;
- Department of Mechanical Engineering, IK Gujral Punjab Technical University Main Campus, Kapurthala 144603, Punjab, India
- Correspondence: or (S.S.); (S.Z.S.Z.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - M. R. M. Asyraf
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia;
| | - S. Z. S. Zakaria
- Research Centre for Environment, Economic and Social Sustainability (KASES), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: or (S.S.); (S.Z.S.Z.)
| |
Collapse
|
35
|
Eltaweil AS, Abd El-Monaem EM, Elshishini HM, El-Aqapa HG, Hosny M, Abdelfatah AM, Ahmed MS, Hammad EN, El-Subruiti GM, Fawzy M, Omer AM. Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Adv 2022; 12:8228-8248. [PMID: 35424751 PMCID: PMC8982349 DOI: 10.1039/d1ra09193j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
The huge development of the industrial sector has resulted in the release of large quantities of phosphate anions which adversely affect the environment, human health, and aquatic ecosystems. Naturally occurring biopolymers have attracted considerable attention as efficient adsorbents for phosphate anions due to their biocompatibility, biodegradability, environmentally-friendly nature, low-cost production, availability in nature, and ease of modification. Amongst them, alginate-based adsorbents are considered one of the most effective adsorbents for removing various types of pollutants from industrial wastewater. The presence of active COOH and OH- groups along the alginate backbone facilitate its physical and chemical modifications and participate in various possible adsorption mechanisms of phosphate anions. Herein, we focus our attention on presenting a comprehensive overview of recent advances in phosphate removal by alginate-based adsorbents. Modification of alginate by various materials, including clays, magnetic materials, layered double hydroxides, carbon materials, and multivalent metals, is addressed. The adsorption potentials of these modified forms for removing phosphate anions, in addition to their adsorption mechanisms are clearly discussed. It is concluded that ion exchange, complexation, precipitation, Lewis acid-base interaction and electrostatic interaction are the most common adsorption mechanisms of phosphate removal by alginate-based adsorbents. Pseudo-2nd order and Freundlich isotherms were figured out to be the major kinetic and isotherm models for the removal process of phosphate. The research findings revealed that some issues, including the high cost of production, leaching, and low efficiency of recyclability of alginate-based adsorbents still need to be resolved. Future trends that could inspire further studies to find the best solutions for removing phosphate anions from aquatic systems are also elaborated, such as the synthesis of magnetic-based alginate and various-shaped alginate nanocomposites that are capable of preventing the leaching of the active materials.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University 163, Horrya Avenue Alexandria Egypt
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Abdelfatah
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Maha S Ahmed
- Higher Institute of Science and Technology-King Mariout Egypt
| | - Eman Nasr Hammad
- Chemistry Department, Faculty of Science, Menoufia University Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) P. O. Box: 21934 New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
36
|
Huang H, Yang Q, Zhang L, Huang C, Liang Y. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Omer AM, Dey R, Eltaweil AS, Abd El-Monaem EM, Ziora ZM. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103543] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Preparation, characterization and releasing property of antibacterial nano-capsules composed of ε-PL-EGCG and sodium alginate-chitosan. Int J Biol Macromol 2022; 204:652-660. [PMID: 35093440 DOI: 10.1016/j.ijbiomac.2022.01.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 01/13/2023]
Abstract
Aquatic products with high moisture and protein content are susceptible to bacterial growth and spoilage. Searching for efficient and safe natural antibacterial agents to preserve aquatic products has been concerned widely. In this study, ε-poly-lysine-epigallocatechin gallate/sodium alginate-chitosan nanoparticles (ε-PL-EGCG/SA-CS NPs) were prepared using sodium alginate and chitosan as wall materials and ε-PL-EGCG as core material. The size of nanoparticles was about 200 nm and the encapsulation efficiency was 78.2%. Transmission electron microscopy (TEM) images confirmed the prepared spherical nanoparticles. Fourier transform infrared spectroscopy (FTIR) and multifunctional polycrystalline X-ray diffraction (XRD) spectra indicated that ε-PL-EGCG was encapsulated in the nanoparticles. Thermo-gravimetric analysis (TGA) illustrated that the thermal stability of encapsulated ε-PL-EGCG was improved more than that of bare ε-PL-EGCG. In addition, in vitro release assays showed that the ε-PL-EGCG was released continuously over 36 h. Bacteria inhibition results showed that the ε-PL-EGCG/SA-CS NPs significantly inhibited specific spoilage bacteria E3 that screened out of aquatic products, Escherichia coli and Staphylococcus aureus. In conclusion, ε-PL-EGCG/SA-CS NPs are an effective antibacterial means with wide application prospects in the field of aquatic products preservation.
Collapse
|
39
|
Omer AM, Abd El-Monaem EM, El-Subruiti GM, Abd El-Latif MM, Eltaweil AS. Fabrication of easy separable and reusable MIL-125(Ti)/MIL-53(Fe) binary MOF/CNT/Alginate composite microbeads for tetracycline removal from water bodies. Sci Rep 2021; 11:23818. [PMID: 34893701 PMCID: PMC8664953 DOI: 10.1038/s41598-021-03428-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023] Open
Abstract
In this investigation, we aimed to fabricate easy separable composite microbeads for efficient adsorption of tetracycline (TC) drug. MIL-125(Ti)/MIL-53(Fe) binary metal organic framework (MOF) was synthetized and incorporated with carbon nanotube (CNT) into alginate (Alg) microbeads to form MIL-125(Ti)/MIL-53(Fe)/CNT@Alg composite microbeads. Various tools including FTIR, XRD, SEM, BET, Zeta potential and XPS were applied to characterize the composite microbeads. It was found that the specific surface area of MIL-125(Ti)/MIL-53(Fe)/CNT@Alg microbeads was 273.77 m2/g. The results revealed that the adsorption of TC augmented with rising CNT proportion up to 15 wt% in the microbeads matrix. In addition, the adsorption process followed the pseudo-second-order and well-fitted to Freundlich and Langmuir models with a maximum adsorption capacity of 294.12 mg/g at 25 ◦C and pH 6. Furthermore, thermodynamic study clarified that the TC adsorption process was endothermic, random and spontaneous. Besides, reusability test signified that MIL-125(Ti)/MIL-53(Fe)/CNT@Alg composite microbeads retained superb adsorption properties for six consecutive cycles, emphasizing its potentiality for removing of pharmaceutical residues.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | | |
Collapse
|
40
|
Omer AM, Sadik WAA, El-Demerdash AGM, Hassan HS. Formulation of pH-sensitive aminated chitosan–gelatin crosslinked hydrogel for oral drug delivery. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldin MS, Abd El-Monaem EM. Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydr Polym 2021; 274:118671. [PMID: 34702487 DOI: 10.1016/j.carbpol.2021.118671] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 01/18/2023]
Abstract
The tremendous development in the industrial sector leads to discharging of the several types of effluents containing detrimental contaminants into water sources. Lately, the proliferation of toxic anions particularly phosphates and nitrates onto aquatic systems certainly depreciates the ecological system and causes a deadly serious problem. Chitosan (Cs) is one of the most auspicious biopolymer adsorbents that are being daily developed for removing of various contaminants from polluted water. This is due to its unparalleled benefits involving biocompatibility, non-toxicity, facile modifications and low-cost production. Nevertheless, chitosan displays considerable drawbacks including low adsorption capacity, low surface area and lack of reusability. Therefore, few findings have been established regarding the aptitude of modified chitosan-based adsorbents towards phosphate and nitrate anions. This review elaborates an overview for the current advances of modified chitosan based-adsorbent for phosphate and nitrate removal, in specific multivalent metals-modified chitosan, clays and zeolite-modified chitosan, magnetic chitosan and carbon materials-modified chitosan. The efforts that have been executed for enriching their adsorption characteristics as well as their possible adsorption mechanisms and reusability were well addressed. Besides, the research conclusions for the optimum adsorption conditions were also discussed, along with emphasizing the foremost research gaps and future potential trends that could motivate further research and innovation to find best solutions for water treatment problems facing the world.
Collapse
Affiliation(s)
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nourhan Mohamed Gaber
- Department of Medical Laboratories, Faculty of Applied health science technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
42
|
Al-Majid AM, Ali M, Islam MS, Alshahrani S, Alamary AS, Yousuf S, Choudhary MI, Barakat A. Stereoselective Synthesis of the Di-Spirooxindole Analogs Based Oxindole and Cyclohexanone Moieties as Potential Anticancer Agents. Molecules 2021; 26:6305. [PMID: 34684885 PMCID: PMC8541513 DOI: 10.3390/molecules26206305] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
A new series of di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were synthesized. Initially, azomethine ylides were generated via reaction of the substituted isatins 3a-f (isatin, 3a, 6-chloroisatin, 3b, 5-fluoroisatin, 3c, 5-nitroisatin, 3d, 5-methoxyisatin, 3e, and 5-methylisatin, 3f, and (2S)-octahydro-1H-indole-2-carboxylic acid 2, in situ azomethine ylides reacted with the cyclohexanone based-chalcone 1a-f to afford the target di-spirooxindole compounds 4a-n. This one-pot method provided diverse structurally complex molecules, with biologically relevant spirocycles in a good yields. All synthesized di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were evaluated for their anticancer activity against four cancer cell lines, including prostate PC3, cervical HeLa, and breast (MCF-7, and MDA-MB231) cancer cell lines. The cytotoxicity of these di-spirooxindole analogs was also examined against human fibroblast BJ cell lines, and they appeared to be non-cytotoxic. Compound 4b was identified as the most active member of this series against prostate cancer cell line PC3 (IC50 = 3.7 ± 1.0 µM). The cyclohexanone engrafted di-spirooxindole analogs 4a and 4l (IC50 = 7.1 ± 0.2, and 7.2 ± 0.5 µM, respectively) were active against HeLa cancer cells, whereas NO2 substituted isatin ring and meta-fluoro-substituted (2E,6E)-2,6-dibenzylidenecyclohexanone containing 4i (IC50 = 7.63 ± 0.08 µM) appeared to be a promising agent against the triple negative breast cancer MDA-MB231 cell line. To explore the plausible mechanism of anticancer activity of di-spirooxindole analogs, molecular docking studies were investigated which suggested that spirooxindole analogs potentially inhibit the activity of MDM2.
Collapse
Affiliation(s)
- Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Saeed Alshahrani
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Abdullah Saleh Alamary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
| | - Sammer Yousuf
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (S.Y.); (M.I.C.)
| | - M. Iqbal Choudhary
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan; (S.Y.); (M.I.C.)
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-M.); (M.A.); (M.S.I.); (S.A.); (A.S.A.)
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| |
Collapse
|
43
|
Eltaweil AS, Mamdouh IM, Abd El-Monaem EM, El-Subruiti GM. Highly Efficient Removal for Methylene Blue and Cu 2+ onto UiO-66 Metal-Organic Framework/Carboxylated Graphene Oxide-Incorporated Sodium Alginate Beads. ACS OMEGA 2021; 6:23528-23541. [PMID: 34549149 PMCID: PMC8444308 DOI: 10.1021/acsomega.1c03479] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 05/02/2023]
Abstract
Herein, we report a new metal-organic framework (MOF)-based composite beads adsorbent made via incorporating UiO-66 MOF, carboxylated graphene oxide (GOCOOH) into sodium alginate for efficient removal of methylene blue dye, and Cu2+ ions. The successful fabrication of the synthesized UiO-66/GOCOOH@SA composite beads was confirmed by means of X-ray diffraction, Fourier transform infrared, scanning electron microscopy, zeta potential, X-ray photoelectron spectroscopy analysis, and thermogravimetric analysis and BET measurement. The incorporation of both UiO-66 and GOCOOH into SA beads greatly increased their adsorption efficiency for the removal of both MB and Cu2+ with maximum adsorption capacities of 490.72 and 343.49 mg/g, respectively. The removal process of both MB and Cu2+ follows the pseudo-second-order model and Freundlich isotherm model. A plausible adsorption mechanism was discussed in detail. Regeneration tests clarified that the removal efficiencies toward both MB and Cu2+ remained higher than 87% after five cycles. These results reveal the potentiality of UiO-66/GOCOOH@SA beads as an excellent adsorbent.
Collapse
Affiliation(s)
- Abdelazeem S. Eltaweil
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Injy M. Mamdouh
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Eman M. Abd El-Monaem
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| | - Gehan M. El-Subruiti
- Chemistry Department, Faculty
of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
44
|
Eltaweil AS, El-Monaem EMA, Mohy-Eldin MS, Omer AM. Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Sci Rep 2021; 11:16598. [PMID: 34400760 PMCID: PMC8368087 DOI: 10.1038/s41598-021-96145-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient composite was constructed based on aminated chitosan (NH2Cs), attapulgite (ATP) clay and magnetic Fe3O4 for adsorptive removal of Cr(VI) ions. The as-fabricated ATP@Fe3O4-NH2Cs composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Zeta potential (ZP), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller method (BET) and X-ray photoelectron spectroscope (XPS). A significant improve in the adsorption profile was established at pH 2 in the order of ATP@Fe3O4-NH2Cs(1:3) > ATP@Fe3O4-NH2Cs(1:1) > ATP@Fe3O4-NH2Cs(3:1) > Fe3O4-NH2Cs > ATP. The maximum removal (%) of Cr(VI) exceeded 94% within a short equilibrium time of 60 min. The adsorption process obeyed the pseudo 2nd order and followed the Langmuir isotherm model with a maximum monolayer adsorption capacity of 294.12 mg/g. In addition, thermodynamics studies elucidated that the adsorption process was spontaneous, randomness and endothermic process. Interestingly, the developed adsorbent retained respectable adsorption properties with acceptable removal efficiency exceeded 58% after ten sequential cycles of reuse. Besides, the results hypothesize that the adsorption process occurs via electrostatic interactions, reduction of Cr(VI) to Cr(III) and ion-exchanging. These findings substantiate that the ATP@Fe3O4-NH2Cs composite could be effectively applied as a reusable adsorbent for removing of Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| |
Collapse
|
45
|
Formulation and Antibacterial Activity Evaluation of Quaternized Aminochitosan Membrane for Wound Dressing Applications. Polymers (Basel) 2021; 13:polym13152428. [PMID: 34372035 PMCID: PMC8347330 DOI: 10.3390/polym13152428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Much attention has been paid to chitosan biopolymer for advanced wound dressing owing to its exceptional biological characteristics comprising biodegradability, biocompatibility and respectable antibacterial activity. This study intended to develop a new antibacterial membrane based on quaternized aminochitosan (QAMCS) derivative. Herein, aminochitosan (AMCS) derivative was quaternized by N-(2-Chloroethyl) dimethylamine hydrochloride with different ratios. The pre-fabricated membranes were characterized by several analysis tools. The results indicate that maximum surface potential of +42.2 mV was attained by QAMCS3 membrane compared with +33.6 mV for native AMCS membrane. Moreover, membranes displayed higher surface roughness (1.27 ± 0.24 μm) and higher water uptake value (237 ± 8%) for QAMCS3 compared with 0.81 ± 0.08 μm and 165 ± 6% for neat AMCS membranes. Furthermore, the antibacterial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus cereus. Superior antibacterial activities with maximum inhibition values of 80–98% were accomplished by QAMCS3 membranes compared with 57–72% for AMCS membrane. Minimum inhibition concentration (MIC) results denote that the antibacterial activities were significantly boosted with increasing of polymeric sample concentration from 25 to 250 µg/mL. Additionally, all membranes unveiled better biocompatibility and respectable biodegradability, suggesting their possible application for advanced wound dressing.
Collapse
|
46
|
Omer AM, Abd El-Monaem EM, Abd El-Latif MM, El-Subruiti GM, Eltaweil AS. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohydr Polym 2021; 265:118084. [PMID: 33966848 DOI: 10.1016/j.carbpol.2021.118084] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022]
Abstract
Metal organic frameworks (MOFs) have become premium candidates for the removal of hazardous contaminants from wastewater. However, MOFs have a vast obstacle which is their poor recyclability. In this study, ZIF-67 was decorated with magnetic Fe3O4 nanoparticles, and then embedded into aminated chitosan (AmCs) matrix to form core-dual shell Fe3O4/ZIF-67@AmCs composite beads. Diverse analysis tools were utilized to ensure the successful fabrication of the magnetic composite beads. The fabricated magnetic composite beads were examined their adsorptive removal aptitude towards toxic Cr(VI) ions. The gained results refereed that a maximum adsorption capacity of 119.05 mg/g was attained by magnetic Fe3O4/ZIF-67@AmCs composite beads at 25 °C. The process obeyed both of Langmuir and Freundlich isotherm models, and the pseudo 2nd order was more suitable kinetic model to represent the adsorption process. Besides, Fe3O4/ZIF-67@AmCs composite showed an excellent recyclability for the removal of Cr(VI) ions from their aqueous solutions for seven consecutive cycles.
Collapse
Affiliation(s)
- Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt.
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|