1
|
Petkov V, Vinarov Z, Tcholakova S. Mechanisms of dissolution and crystallization of amorphous glibenclamide. Int J Pharm 2024; 666:124820. [PMID: 39419363 DOI: 10.1016/j.ijpharm.2024.124820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Amorphous solid dispersions enhance the dissolution and oral bioavailability of poorly water-soluble drugs. However, the link between polymer properties and formulation performance has not been fully clarified yet. We studied the effect of hydroxypropyl cellulose (HPC) polymers molecular weight (Mw) on the storage stability, dissolution kinetics and supersaturation stability of spray-dried amorphous glibenclamide (GLB) formulations. The solid-state stability of amorphous GLB during storage was significantly enhanced by both the 40 kDa (HPC-SSL) and 84 kDa (HPC-L) polymers, regardless of Mw differences. In contrast, HPC-SSL maintained significantly higher aqueous drug concentrations during dissolution, compared to HPC-L (its higher Mw analogue). Dedicated dissolution experiments, in situ optical microscopy and solid-state characterization revealed that aqueous drug concentrations were determined by the interplay between crystallization inhibition, drug ionization, wetting and solubilization effects: (1) HPC prevents surface nucleation, hence inhibiting crystallization, (2) intestinal colloids (bile salts and phospholipids) increase supersaturated drug concentrations via wetting and solubilization effects and (3) pH and drug ionization severely impact the degree of supersaturation. The better performance of the lower Mw HPC-SSL was due to its superior inhibition of surface crystallization during dissolution. These insights into the molecular mechanisms of dissolution and crystallization of amorphous solids provide foundation for rational formulation development.
Collapse
Affiliation(s)
- Vladimir Petkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier ave., 1164 Sofia, Bulgaria
| | - Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier ave., 1164 Sofia, Bulgaria.
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier ave., 1164 Sofia, Bulgaria
| |
Collapse
|
2
|
Hamed R, AbuKwiak AD, Aburayya R, Alkilani AZ, Hamadneh L, Naser M, Al-Adhami Y, Alhusban AA. Microneedles mediated-dermal delivery of Vitamin C: Formulation, characterization, cytotoxicity, and enhancement of stability. Heliyon 2024; 10:e37381. [PMID: 39290271 PMCID: PMC11407233 DOI: 10.1016/j.heliyon.2024.e37381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin C (VIT C) is an antioxidant that prevents skin aging. Although dermal delivery is one of the most effective routes to transport VIT C to the skin, the impact of this route can be limited by the barrier function of the stratum corneum (SC). Additionally, VIT C rapidly oxidized and degraded under light and temperature. Therefore, this study provides an approach to utilizing microneedles (MNs) to improve the dermal delivery of VIT C and enhance its stability by incorporating a stabilizing system of ethylenediaminetetraacetic acid (EDTA) and sodium metabisulfite (Meta) within the MNs. Vitamin C microneedles (VIT C MNs) were fabricated using different biodegradable polymers and various concentrations of EDTA/Meta. VIT C MNs were evaluated for morphology, VIT C content, mechanical properties, dissolution rate, needles' insertion, physicochemical properties, ex vivo permeation, viscosity of VIT C polymeric solutions, cytotoxicity, and stability. The results showed that VIT C MNs were uniform and mechanically strong. The recovery of VIT C in MNs was 88.3-90.0 %. The dissolution rate of MNs was <30 min. The flux of VIT C varied based on the composition of MNs. VIT C MNs demonstrated safety against human dermal fibroblasts. VIT C MNs with EDTA/Meta (0.1/0.3 %) were stable under different storage conditions for two months. In conclusion, VIT C MNs were successfully developed using biodegradable polymers, and the stabilizing system (EDTA/META) provided a stable dermal delivery system for VIT C to protect skin from aging.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Amani D AbuKwiak
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Zarqa, 13110, Jordan
| | - Rafa Aburayya
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Zarqa, 13110, Jordan
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt, 19117, Jordan
| | - Mais Naser
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Yasmeen Al-Adhami
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| |
Collapse
|
3
|
Wilke SK, Benmore CJ, Menon V, Smith D, Byrn SR, Weber R. Molecular structure of ketoprofen-polyvinylpyrrolidone solid dispersions prepared by different amorphization methods. RSC PHARMACEUTICS 2024; 1:121-131. [PMID: 38646594 PMCID: PMC11024667 DOI: 10.1039/d3pm00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/25/2024] [Indexed: 04/23/2024]
Abstract
Amorphous solid dispersions (ASDs) are a widely studied formulation approach for improving the bioavailability of poorly water-soluble pharmaceuticals. Yet, a complete understanding remains lacking for how specific processing methods may influence ASDs' molecular structure. We prepare ketoprofen/polyvinylpyrrolidone (KTP/PVP) ASDs, ranging from 0-75 wt% KTP, using five different amorphization techniques: melt quenching, rotary evaporation with vacuum drying, spray drying, and acoustic levitation with either a premixed solution or in situ mixing of separate co-sprayed solutions. The co-spray levitation approach enables on-demand compositional changes in a containerless processing environment, while requiring minimal pharmaceutical material (∼1 mg). The structure of all ASDs are then compared using high-energy X-ray total scattering. X-ray pair distribution functions are similar for most ASDs of a given composition (Rx = 0.4-2.5%), which is consistent with them having similar intramolecular structure. More notably, differences in the X-ray structure factors for the various amorphization routes indicate differing extents of molecular mixing, a direct indication of their relative stability against crystallization. Melt quenching, spray drying, and levitation of premixed solutions exhibit some degree of molecular mixing, while the co-sprayed levitation samples have molecular arrangements like those of KTP/PVP physical mixtures. These findings illustrate how X-ray total scattering can be used to benchmark amorphous forms prepared by different techniques.
Collapse
Affiliation(s)
- Stephen K Wilke
- Materials Development, Inc. Evanston 825 Chicago Ave IL 60202 USA
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| | - Chris J Benmore
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| | - Vrishank Menon
- Materials Development, Inc. Evanston 825 Chicago Ave IL 60202 USA
| | - Dan Smith
- Improved Pharma West Lafayette IN 47906 USA
| | | | - Richard Weber
- Materials Development, Inc. Evanston 825 Chicago Ave IL 60202 USA
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| |
Collapse
|
4
|
Orszulak L, Lamrani T, Tarnacka M, Hachuła B, Jurkiewicz K, Zioła P, Mrozek-Wilczkiewicz A, Kamińska E, Kamiński K. The Impact of Various Poly(vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole. Pharmaceutics 2024; 16:136. [PMID: 38276506 PMCID: PMC10820696 DOI: 10.3390/pharmaceutics16010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In this paper, we propose one-step synthetic strategies for obtaining well-defined linear and star-shaped polyvinylpyrrolidone (linPVP and starPVP). The produced macromolecules and a commercial PVP K30 with linear topology were investigated as potential matrices for suppressing metronidazole (MTZ) crystallization. Interestingly, during the formation of binary mixtures (BMs) containing different polymers and MTZ, we found that linear PVPs exhibit maximum miscibility with the drug at a 50:50 weight ratio (w/w), while the star-shaped polymer mixes with MTZ even at a 30:70 w/w. To explain these observations, comprehensive studies of MTZ-PVP formulations with various contents of both components were performed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The obtained results clearly showed that the polymer's topology plays a significant role in the type of interactions occurring between the matrix and MTZ. Additionally, we established that for MTZ-PVP 50:50 and 75:25 w/w BMs, linear polymers have the most substantial impact on inhibiting the crystallization of API. The star-shaped macromolecule turned out to be the least effective in stabilizing amorphous MTZ at these polymer concentrations. Nevertheless, long-term structural investigations of the MTZ-starPVP 30:70 w/w system (which is not achievable for linear PVPs) demonstrated its complete amorphousness for over one month.
Collapse
Affiliation(s)
- Luiza Orszulak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland;
| | - Taoufik Lamrani
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-007 Katowice, Poland;
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Patryk Zioła
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| | - Anna Mrozek-Wilczkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
- Biotechnology Centre, Silesian University of Technology, Boleslawa Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland;
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (T.L.); (M.T.); (K.J.); (P.Z.); (A.M.-W.); (K.K.)
| |
Collapse
|
5
|
Bookwala M, Wildfong PLD. The Implications of Drug-Polymer Interactions on the Physical Stability of Amorphous Solid Dispersions. Pharm Res 2023; 40:2963-2981. [PMID: 37389801 DOI: 10.1007/s11095-023-03547-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023]
Abstract
Amorphous solid dispersions (ASDs) are a formulation and development strategy that can be used to increase the apparent aqueous solubility of poorly water-soluble drugs. Their implementation, however, can be hindered by destabilization of the amorphous form, as the drug recrystallizes from its metastable state. Factors such as the drug-polymer solubility, miscibility, mobility, and nucleation/crystal growth rates are all known to impact the physical stability of an ASD. Non-covalent interactions (NCI) between the drug and polymer have also been widely reported to influence product shelf-life. In this review, the relationship between thermodynamic/kinetic factors and adhesive NCI is assessed. Various types of NCIs reported to stabilize ASDs are described, and their role in affecting physical stability is examined. Finally, NCIs that have not yet been widely explored in ASD formulations, but may potentially impact their physical stability are also briefly described. This review aims to stimulate further theoretical and practical exploration of various NCIs and their applications in ASD formulations in the future.
Collapse
Affiliation(s)
- Mustafa Bookwala
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA
| | - Peter L D Wildfong
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
6
|
Samaro A, Vergaelen M, Purino M, Tigrine A, de la Rosa VR, Goudarzi NM, Boone MN, Vanhoorne V, Hoogenboom R, Vervaet C. Poly(2-alkyl-2-oxazoline)s: A polymer platform to sustain the release from tablets with a high drug loading. Mater Today Bio 2022; 16:100414. [PMID: 36133793 PMCID: PMC9483731 DOI: 10.1016/j.mtbio.2022.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Sustaining the release of highly dosed APIs from a matrix tablet is challenging. To address this challenge, this study evaluated the performance of thermoplastic poly (2-alkyl-2-oxazoline)s (PAOx) as matrix excipient to produce sustained-release tablets via three processing routes: (a) hot-melt extrusion (HME) combined with injection molding (IM), (b) HME combined with milling and compression and (c) direct compression (DC). Different PAOx (co-)polymers and polymer mixtures were processed with several active pharmaceutical ingredients having different aqueous solubilities and melting temperatures (metoprolol tartrate (MPT), metformin hydrochloride (MTF) and theophylline anhydrous (THA)). Different PAOx grades were synthesized and purified by the Supramolecular Chemistry Group, and the effect of PAOx grade and processing technique on the in vitro release kinetics was evaluated. Using the hydrophobic poly (2-n-propyl-2-oxazoline) (PnPrOx) as a matrix excipient allowed to sustain the release of different APIs, even at a 70% (w/w) drug load. Whereas complete THA release was not achieved from the PnPrOx matrix over 24 h regardless of the processing technique, adding 7.5% w/w of the hydrophilic poly (2-ethyl-2-oxazoline) to the hydrophobic PnPrOx matrix significantly increased THA release, highlighting the relevance of mixing different PAOx grades. In addition, it was demonstrated that the release of THA was similar from co-polymer and polymer mixtures with the same polymer ratios. On the other hand, as the release of MTF from a PnPrOx matrix was fast, the more hydrophobic poly (2-sec-butyl-2-oxazoline) (PsecBuOx) was used to retard MTF release. In addition, a mixture between the hydrophilic PEtOx and the hydrophobic PsecBuOx allowed accurate tuning of the release of MTF formulations. Finally, it was demonstrated that PAOx also showed a high ability to tune the in vivo release. IM tablets containing 70% MTF and 30% PsecBuOx showed a lower in vivo bioavailability compared to IM tablets containing a low PEtOx concentration (7.5%, w/w) in combination with PsecBuOx (22.5%, w/w). Importantly, the in vivo MTF blood level from the sustained release tablets correlated well with the in vitro release profiles. In general, this work demonstrates that PAOx polymers offer a versatile formulation platform to adjust the release rate of different APIs, enabling sustained release from tablets with up to 70% w/w drug loading.
Collapse
Affiliation(s)
- Aseel Samaro
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Martin Purino
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Ali Tigrine
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium.,Avroxa BV., Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Niloofar Moazami Goudarzi
- Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, Belgium.,Center for X-ray Tomography (UGCT), Ghent University, Ghent, Belgium
| | - Matthieu N Boone
- Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, Belgium.,Center for X-ray Tomography (UGCT), Ghent University, Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| |
Collapse
|
7
|
|