1
|
Gayathri K, Vidya R. Carbon nanomaterials as carriers for the anti-cancer drug doxorubicin: a review on theoretical and experimental studies. NANOSCALE ADVANCES 2024; 6:3992-4014. [PMID: 39114152 PMCID: PMC11302188 DOI: 10.1039/d4na00278d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 08/10/2024]
Abstract
The incidence of cancer is increasing worldwide in a life-threatening manner. In such a scenario, the development of anti-cancer drugs with minimal side effects and effective drug delivery systems is of paramount importance. Doxorubicin (DOX) is one of the powerful anti-cancer drugs from the chemical family anthracycline, which is used to treat a wide variety of cancers, including breast, prostate, ovarian, and hematological malignancies. However, DOX has been associated with many side effects, including lethal cardiotoxicity, baldness, gastrointestinal disturbances and cognitive function impairment. Even though DOX is administered in liposomal formulations to reduce its toxicity and enhance its therapeutic profile, the liposomal formulations themselves have certain therapeutic profile limitations such as "palmar-plantar erythrodysesthesia (PPE)", which shows severe swelling and redness in the skin, thus restricting the dosage and reducing patient compliance. In contemporary chemotherapy research, there is a great interest in the utilization of nanomaterials for precise and targeted drug delivery applications, especially using carbon-based nanomaterials. This review provides a comprehensive overview of both experimental and theoretical scientific works, exploring diverse forms of carbon-based materials such as graphene, graphene oxide, and carbon nanotubes that function as carriers for DOX. In addition, the review consolidates information on the fate of the carriers after the delivery of the payload at the site of action through different imaging techniques and the various pathways through which the body eliminates these nanomaterials. In conclusion, the review presents a detailed overview of the toxicities associated with these carriers within the human body, contributing to the development of enhanced drug delivery systems.
Collapse
Affiliation(s)
- K Gayathri
- Centre for Materials Informatics(C-mAIn), Sir. C.V. Raman Science Block, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
- Department of Physics, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
| | - R Vidya
- Centre for Materials Informatics(C-mAIn), Sir. C.V. Raman Science Block, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
- Department of Physics, Anna University Sardar Patel Road, Guindy Chennai 600 025 India
| |
Collapse
|
2
|
Thakur CK, Karthikeyan C, Ashby CR, Neupane R, Singh V, Babu RJ, Narayana Moorthy NSH, Tiwari AK. Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery. Front Pharmacol 2024; 15:1417399. [PMID: 39119607 PMCID: PMC11306048 DOI: 10.3389/fphar.2024.1417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
- Chhattrapati Shivaji Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY, United States
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Vishal Singh
- Department of Nutrition, State College, Pennsylvania State University, University Park, PA, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - N. S. Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Thakur CK, Martins FG, Karthikeyan C, Bhal S, Kundu CN, Moorthy NSHN, Sousa SF. In silico-guided discovery and in vitro validation of novel sugar-tethered lysinated carbon nanotubes for targeted drug delivery of doxorubicin. J Mol Model 2024; 30:261. [PMID: 38985223 PMCID: PMC11236919 DOI: 10.1007/s00894-024-06061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
CONTEXT Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading. Moreover, the elevated adsorption levels observed for functionalized nanotubes further support this enhancement in loading efficiency. MD simulations also shed light on the intratumoral pH-specific release of doxorubicin from functionalized MWCNTs, which is induced by protonation of the daunosamine moiety. The simulations show that this change in protonation leads to a lower absorption of doxorubicin to the MWCNTs. The MD studies were then experimentally validated, where functionalized MWCNTs showed improved dispersion in aqueous medium compared to pristine MWCNTs and, in agreement with the computational predictions, increased drug loading capacity. Doxorubicin-loaded functionalized MWCNTs demonstrated specific release of doxorubicin in tumor microenvironment (pH = 5.0) with negligible release in the physiological pH (pH = 7.4). Furthermore, doxorubicin-free MWNCT nanoformulations exhibited insignificant cytotoxicity. The experimental studies yielded nearly identical results to the MD studies, underlining the usefulness of the method. Our functionalized MWCNTs represent promising non-toxic nanoplatforms with enhanced aqueous dispersibility and the potential for conjugation with ligands for targeted delivery of anti-cancer drugs to breast cancer cells. METHODS The computational model of a pristine carbon nanotube was created with the buildCstruct 1.2 Python script. The lysinated functionalized groups were added with PyMOL and VMD. The carbon nanotubes and doxorubicin molecules were parameterized using the general AMBER force field, and RESP charges were determined using Gaussian 09. Molecular dynamics simulations were carried out with the AMBER 20 software package. Adsorption levels were calculated using the water-shell function of cpptraj. Cytotoxicity was evaluated via a MTT assay using MDA-MB-231 and MCF-7 breast cancer cells. Drug uptake of doxorubicin and doxorubicin-loaded MWCNTs was measured by fluorescence microscopy.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh, 484887, India
| | - Fábio G Martins
- LAQV/REQUIMTE, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade Do Porto, 4200-319, Porto, Portugal
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh, 484887, India
| | - Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, KIIT Deemed to Be University, Campus-11, Patia,, Bhubaneswar, Odisha, 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, KIIT Deemed to Be University, Campus-11, Patia,, Bhubaneswar, Odisha, 751024, India
| | - N S Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh, 484887, India.
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade Do Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
4
|
Lyra KM, Tournis I, Subrati M, Spyrou K, Papavasiliou A, Athanasekou C, Papageorgiou S, Sakellis E, Karakassides MA, Sideratou Z. Carbon Nanodisks Decorated with Guanidinylated Hyperbranched Polyethyleneimine Derivatives as Efficient Antibacterial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:677. [PMID: 38668171 PMCID: PMC11054016 DOI: 10.3390/nano14080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Non-toxic carbon-based hybrid nanomaterials based on carbon nanodisks were synthesized and assessed as novel antibacterial agents. Specifically, acid-treated carbon nanodisks (oxCNDs), as a safe alternative material to graphene oxide, interacted through covalent and non-covalent bonding with guanidinylated hyperbranched polyethyleneimine derivatives (GPEI5K and GPEI25K), affording the oxCNDs@GPEI5K and oxCNDs@GPEI25K hybrids. Their physico-chemical characterization confirmed the successful and homogenous attachment of GPEIs on the surface of oxCNDs, which, due to the presence of guanidinium groups, offered them improved aqueous stability. Moreover, the antibacterial activity of oxCNDs@GPEIs was evaluated against Gram-negative E. coli and Gram-positive S. aureus bacteria. It was found that both hybrids exhibited enhanced antibacterial activity, with oxCNDs@GPEI5K being more active than oxCNDs@GPEI25K. Their MIC and MBC values were found to be much lower than those of oxCNDs, revealing that the GPEI attachment endowed the hybrids with enhanced antibacterial properties. These improved properties were attributed to the polycationic character of the oxCNDs@GPEIs, which enables effective interaction with the bacterial cytoplasmic membrane and cell walls, leading to cell envelope damage, and eventually cell lysis. Finally, oxCNDs@GPEIs showed minimal cytotoxicity on mammalian cells, indicating that these hybrid nanomaterials have great potential to be used as safe and efficient antibacterial agents.
Collapse
Affiliation(s)
- Kyriaki-Marina Lyra
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Ioannis Tournis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Mohammed Subrati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Konstantinos Spyrou
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (K.S.); (M.A.K.)
| | - Aggeliki Papavasiliou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Chrysoula Athanasekou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Sergios Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
- Physics Department, Condensed Matter Physics Section, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 15784 Athens, Greece
| | - Michael A. Karakassides
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (K.S.); (M.A.K.)
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| |
Collapse
|
5
|
Rosini E, Boreggio M, Verga M, Caldinelli L, Pollegioni L, Fasoli E. The D-amino acid oxidase-carbon nanotubes: evaluation of cytotoxicity and biocompatibility of a potential anticancer nanosystem. 3 Biotech 2023; 13:243. [PMID: 37346390 PMCID: PMC10279611 DOI: 10.1007/s13205-023-03568-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The 'enzyme prodrug therapy' represents a promising strategy to overcome limitations of current cancer treatments by the systemic administration of prodrugs, converted by a foreign enzyme into an active anticancer compound directly in tumor sites. One example is D-amino acid oxidase (DAAO), a dimeric flavoenzyme able to catalyze the oxidative deamination of D-amino acids with production of hydrogen peroxide, a reactive oxygen species (ROS), able to favor cancer cells death. A DAAO variant containing five aminoacidic substitutions (mDAAO) was demonstrated to possess a better therapeutic efficacy under low O2 concentration than wild-type DAAO (wtDAAO). Recently, aiming to design promising nanocarriers for DAAO, multi-walled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG) to reduce their tendency to aggregation and to improve their biocompatibility. Here, wtDAAO and mDAAO were adsorbed on PEGylated MWCNTs and their activity and cytotoxicity were tested. While PEG-MWCNTs-DAAOs have shown a higher activity than pristine MWCNTs-DAAO (independently on the DAAO variant used), PEG-MWCNTs-mDAAO showed a higher cytotoxicity than PEG-MWCNTs-wtDAAO at low O2 concentration. In order to evaluate the nanocarriers' biocompatibility, PEG-MWCNTs-DAAOs were incubated in human serum and the composition of protein corona was investigated via nLC-MS/MS, aiming to characterize both soft and hard coronas. The mDAAO variant has influenced the bio-corona composition in both number of proteins and presence of opsonins and dysopsonins: notably, the soft corona of PEG-MWCNTs-mDAAO contained less proteins and was more enriched in proteins able to inhibit the immune response than PEG-MWCNTs-wtDAAO. Considering the obtained results, the PEGylated MWCNTs conjugated with the mDAAO variant seems a promising candidate for a selective antitumor oxidative therapy: under anoxic-like conditions, this novel drug delivery system showed a remarkable cytotoxic effect controlled by the substrate addition, against different tumor cell lines, and a bio-corona composition devoted to prolong its blood circulation time, thus improving the drug's biodistribution. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03568-1.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Matteo Verga
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Laura Caldinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
6
|
Park JY, Lee GH, Yoo KH, Khang D. Overcoming multidrug-resistant lung cancer by mitochondrial-associated ATP inhibition using nanodrugs. J Nanobiotechnology 2023; 21:12. [PMID: 36635755 PMCID: PMC9835376 DOI: 10.1186/s12951-023-01768-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Despite the development of therapeutic modalities to treat cancer, multidrug resistance (MDR) and incomplete destruction of deeply embedded lung tumors remain long-standing problems responsible for tumor recurrence and low survival rates. Therefore, developing therapeutic approaches to treat MDR tumors is necessary. In this study, nanodrugs with enhanced intracellular drug internalization were identified by the covalent bonding of carbon nanotubes of a specific nano size and doxorubicin (DOX). In addition, carbon nanotube conjugated DOX (CNT-DOX) sustained in the intracellular environment in multidrug-resistant tumor cells for a long time causes mitochondrial damage, suppresses ATP production, and results in the effective therapeutic effect of drug-resistant tumors. This study identified that H69AR lung cancer cells, an adriamycin (DOX) drug-resistant tumor cell line, did not activate drug resistance function on designed nano-anticancer drugs with a specific nano size. In summary, this study identified that the specific size of the nanodrug in combination with DOX overcame multidrug-resistant tumors by inducing selective accumulation in tumor cells and inhibiting ATP by mitochondrial damage.
Collapse
Affiliation(s)
- Jun-Young Park
- grid.256155.00000 0004 0647 2973Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999 South Korea ,grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 South Korea
| | - Gyu-Ho Lee
- grid.256155.00000 0004 0647 2973Department of Physiology, College of Medicine, Gachon University, Incheon, 21999 South Korea
| | - Kwai Han Yoo
- grid.411653.40000 0004 0647 2885Department of Internal Medicine, Gachon University Gil Medical Center, College of Medicine, Incheon, 21565 South Korea
| | - Dongwoo Khang
- grid.256155.00000 0004 0647 2973Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999 South Korea ,grid.256155.00000 0004 0647 2973Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999 South Korea ,grid.256155.00000 0004 0647 2973Department of Physiology, College of Medicine, Gachon University, Incheon, 21999 South Korea
| |
Collapse
|
7
|
Jiwanti PK, Wardhana BY, Sutanto LG, Dewi DMM, Putri IZD, Savitri INI. Recent Development of Nano-Carbon Material in Pharmaceutical Application: A Review. Molecules 2022; 27:7578. [PMID: 36364403 PMCID: PMC9654677 DOI: 10.3390/molecules27217578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Carbon nanomaterials have attracted researchers in pharmaceutical applications due to their outstanding properties and flexible dimensional structures. Carbon nanomaterials (CNMs) have electrical properties, high thermal surface area, and high cellular internalization, making them suitable for drug and gene delivery, antioxidants, bioimaging, biosensing, and tissue engineering applications. There are various types of carbon nanomaterials including graphene, carbon nanotubes, fullerenes, nanodiamond, quantum dots and many more that have interesting applications in the future. The functionalization of the carbon nanomaterial surface could modify its chemical and physical properties, as well as improve drug loading capacity, biocompatibility, suppress immune response and have the ability to direct drug delivery to the targeted site. Carbon nanomaterials could also be fabricated into composites with proteins and drugs to reduce toxicity and increase effectiveness in the pharmaceutical field. Thus, carbon nanomaterials are very effective for applications in pharmaceutical or biomedical systems. This review will demonstrate the extraordinary properties of nanocarbon materials that can be used in pharmaceutical applications.
Collapse
Affiliation(s)
- Prastika K. Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Brasstira Y. Wardhana
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Laurencia G. Sutanto
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | - Diva Meisya Maulina Dewi
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Kampus C Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Ilmi Nur Indira Savitri
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
8
|
Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022; 20:152. [PMID: 35331246 PMCID: PMC8944113 DOI: 10.1186/s12951-022-01364-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea.
| | - Shweta B Borkar
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sondavid K Nandanwar
- Department of Basic Science Research Institute, Pukyong National University, Busan, 48513, Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, S-75120, Uppsala, Sweden
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|