1
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
2
|
Vaidya RY, I.N A, Balakrishnan D, Nakata H, S K, Krishnamoorthy G. Impact of graphene incorporation in dental implants-A scoping review. Heliyon 2024; 10:e37751. [PMID: 39318807 PMCID: PMC11420491 DOI: 10.1016/j.heliyon.2024.e37751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
There are numerous variables governing the formation of new bone around a dental implant. Of those variables, the implant surface is an important factor influencing the quality of osseointergration. Numerous techniques and materials have been used to alter the surface of an implant to enhance osseointergration and improve the survival and success rate. One such modification is utilizing graphene to modify the surface of an implant. This paper summarizes data collected form articles published in online databases in the past 10 years about the various means of modifying the implant surfaces and provides an in-depth review of the impact of graphene incorporation in dental implants. The document comprised of different sections and emphasized on the use of graphene as an implant surface coating material. The role of graphene on flexural strength, hardness and corrosion resistance have been discussed under mechanical properties whereas the potential of this combination on the osteogenesis, osseointergration and soft tissue seal is covered under biological properties. Lastly, how this combination acts as a drug delivery carrier and renders antimicrobial property has been addressed under pharmacological properties. This review has highlighted the various applications of graphene in the field of implant dentistry. It has outlined the various implant surface modifying methods and thrown light on the various affect this combination has on the mechanical, biological and pharmacological properties. Considering the various research done on the material, it can be concluded that graphene does have a bright future in implant dentistry and continued research in this area will provide fruitful benefits.
Collapse
Affiliation(s)
- Rohan Yatindra Vaidya
- Dept. of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Karnataka, India
| | - Aparna I.N
- Dept. of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Karnataka, India
| | - Dhanasekar Balakrishnan
- Dept. of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Karnataka, India
| | - Hidemi Nakata
- Department of Regenerative & Reconstructive Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Karthik S
- Dept. of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Karnataka, India
| | - Gayathri Krishnamoorthy
- Dept. of Prosthodontics and Crown & Bridge, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Karnataka, India
| |
Collapse
|
3
|
Yang Q, Li Y, Wan R, Dong L, He A, Zuo D, Dai Z. Multilayer Gelatin-Supported BMP-9 Coating Promotes Osteointegration and Neo-Bone Formation at the n-CDHA/PAA Composite Biomaterial-Bone Interface. FRONT BIOSCI-LANDMRK 2024; 29:326. [PMID: 39344336 DOI: 10.31083/j.fbl2909326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The development of biomaterials capable of accelerating bone wound repair is a critical focus in bone tissue engineering. This study aims to evaluate the osteointegration and bone regeneration potential of a novel multilayer gelatin-supported Bone Morphogenetic Protein 9 (BMP-9) coated nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) composite biomaterials, focusing on the material-bone interface, and putting forward a new direction for the research on the interface between the coating material and bone. METHODS The BMP-9 recombinant adenovirus (Adenovirus (Ad)-BMP-9/Bone Marrow Mesenchymal Stem Cells (BMSc)) was produced by transfecting BMSc and supported using gelatin (Ad-BMP-9/BMSc/Gelatin (GT). Multilayer Ad-BMP-9/BMSc/GT coated nano-calcium deficient hydroxyapatite/polyamino acid (n-CDHA/PAA) composite biomaterials were then prepared and co-cultured with MG63 cells for 10 days, with biocompatibility assessed through microscopy, Cell Counting Kit-8 (CCK-8), and alkaline phosphatase (ALP) assays. Subsequently, multilayer Ad-BMP-9/BMSc/GT coated n-CDHA/PAA composite biomaterial screws were fabricated, and the adhesion of the coating to the substrate was observed using scanning electron microscopy (SEM). In vivo studies were conducted using a New Zealand White rabbit intercondylar femoral fracture model. The experimental group was fixed with screws featuring multilayer Ad-BMP-9/BMSc/GT coatings, while the control groups used medical metal screws and n-CDHA/PAA composite biomaterial screws. Fracture healing was monitored at 1, 4, 12, and 24 weeks, respectively, using X-ray observation, Micro-CT imaging, and SEM. Integration at the material-bone interface and the condition of neo-tissue were assessed through these imaging techniques. RESULTS The Ad-BMP-9/GT coating significantly enhanced MG63 cell adhesion, proliferation, and differentiation, while increasing BMP-9 expression in vitro. In vivo studies using a rabbit femoral fracture model confirmed the biocompatibility and osteointegration potential of the multilayer Ad-BMP-9/BMSc/GT coated n-CDHA/PAA composite biomaterial screws. Compared to control groups (medical metal screws and n-CDHA/PAA composite biomaterial screws), this material demonstrated faster fracture healing, stronger osteointegration, and facilitated new bone tissue formation with increased calcium deposition at the material-bone interface. CONCLUSION The multilayer GT-supported BMP-9 coated n-CDHA/PAA composite biomaterials have demonstrated favorable osteogenic cell interface performance, both in vitro and in vivo. This study provides a foundation for developing innovative bone repair materials, holding promise for significant advancements in clinical applications.
Collapse
Affiliation(s)
- Qiming Yang
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| | - Yue Li
- Department of Clinical Laboratory, the Second Affiliated Hospital, Chongqing Medical University, 400000 Chongqing, China
| | - Ruijie Wan
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| | - Lujue Dong
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
- Chongqing Precision Medical Industry Technology Research Institute, 400000 Chongqing, China
| | - Zhenyu Dai
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, 400021 Chongqing, China
| |
Collapse
|
4
|
Cho YC, Peng PW, Ou YS, Liu CM, Huang BH, Lan WC, Kuo HH, Hsieh CC, Chen B, Huang MS, Nakano H. An Innovative Design to Enhance Osteoinductive Efficacy and Biomechanical Behavior of a Titanium Dental Implant. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2276. [PMID: 38793339 PMCID: PMC11123487 DOI: 10.3390/ma17102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
The present study investigated the in vivo bone-forming efficacy of an innovative titanium (Ti) dental implant combined with a collagen sponge containing recombinant human bone morphogenetic protein-2 (BMP-2) in a pig model. Two different concentrations of BMP-2 (20 and 40 µg/mL) were incorporated into collagen sponges and placed at the bottom of Ti dental implants. The investigated implants were inserted into the edentulous ridge at the canine-premolar regions of Lanyu small-ear pigs, which were then euthanized at weeks 1, 2, 4, 8, and 12 post-implantation. Specimens containing the implants and surrounding bone tissue were collected for histological evaluation of their bone-to-implant contact (BIC) ratios and calculation of maximum torques using removal torque measurement. Analytical results showed that the control and BMP-2-loaded implants presented good implant stability and bone healing for all testing durations. After 1 week of healing, the BMP-2-loaded implants with a concentration of 20 µg/mL exhibited the highest BIC ratios, ranging from 58% to 76%, among all groups (p = 0.034). Additionally, they also possessed the highest removal torque values (50.1 ± 1.3 N-cm) throughout the 8-week healing period. The BMP-2-loaded implants not only displayed excellent in vivo biocompatibility but also presented superior osteoinductive performance. Therefore, these findings demonstrate that BMP-2 delivered through a collagen sponge can potentially enhance the early-stage osseointegration of Ti dental implants.
Collapse
Affiliation(s)
- Yung-Chieh Cho
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Wen Peng
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-W.P.); (C.-C.H.)
| | - Yu-Sin Ou
- General Biology Major with Studio Visual Art Minor, Warren College, University of California, San Diego, CA 92093, USA;
| | - Chung-Ming Liu
- Department of Biomedical Engineering, College of Biomedical Engineering, China Medical University, Taichung 404, Taiwan;
| | - Bai-Hung Huang
- Graduate Institute of Dental Science, College of Dentistry, China Medical University, Taichung 404, Taiwan;
| | - Wen-Chien Lan
- Department of Oral Hygiene Care, Deh Yu College of Nursing and Health, Keelung 203, Taiwan;
| | - Hsin-Hui Kuo
- Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan;
| | - Chia-Chien Hsieh
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-W.P.); (C.-C.H.)
| | - Brian Chen
- Department of Biochemistry, Lehigh University, Bethlehem, PA 18015, USA;
| | - Mao-Suan Huang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Hiroyuki Nakano
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
5
|
Chen T, Jiang Y, Huang JP, Wang J, Wang ZK, Ding PH. Essential elements for spatiotemporal delivery of growth factors within bio-scaffolds: A comprehensive strategy for enhanced tissue regeneration. J Control Release 2024; 368:97-114. [PMID: 38355052 DOI: 10.1016/j.jconrel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The precise delivery of growth factors (GFs) in regenerative medicine is crucial for effective tissue regeneration and wound repair. However, challenges in achieving controlled release, such as limited half-life, potential overdosing risks, and delivery control complexities, currently hinder their clinical implementation. Despite the plethora of studies endeavoring to accomplish effective loading and gradual release of GFs through diverse delivery methods, the nuanced control of spatial and temporal delivery still needs to be elucidated. In response to this pressing clinical imperative, our review predominantly focuses on explaining the prevalent strategies employed for spatiotemporal delivery of GFs over the past five years. This review will systematically summarize critical aspects of spatiotemporal GFs delivery, including judicious bio-scaffold selection, innovative loading techniques, optimization of GFs activity retention, and stimulating responsive release mechanisms. It aims to identify the persisting challenges in spatiotemporal GFs delivery strategies and offer an insightful outlook on their future development. The ultimate objective is to provide an invaluable reference for advancing regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yao Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jia-Ping Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zheng-Ke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Pei-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
6
|
Xu H, Luo H, Chen J, Chen G, Yu X, Ye Z. BMP-2 releasing mineral-coated microparticle-integrated hydrogel system for enhanced bone regeneration. Front Bioeng Biotechnol 2023; 11:1217335. [PMID: 37635994 PMCID: PMC10447977 DOI: 10.3389/fbioe.2023.1217335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Large bone defects (LBD) caused by trauma, infection, and tumor resection remain a significant clinical challenge. Although therapeutic agents such as bone morphogenetic protein-2 (BMP-2), have shown substantial potency in various clinical scenarios, their uncontrollable release kinetics has raised considerable concern from the clinical viewpoint. Mineral-coated microparticle (MCM) has shown its excellent biologics loading and delivery potential due to its superior protein-binding capacity and controllable degradation behaviors; thus, it is conceivable that MCM can be combined with hydrogel systems to enable optimized BMP-2 delivery for LBD healing. Methods: Herein, BMP-2 was immobilized on MCMs via electrostatic interaction between its side chains with the coating surface. Subsequently, MCM@BMP-2 is anchored into a hydrogel by the crosslinking of chitosan (CS) and polyethylene glycol (PEG). Results and Discussion: This microparticle-hydrogel system exhibits good biocompatibility, excellent vascularization, and the sustained release of BMP-2 in the bone defect. Furthermore, it is observed that this microsphere-hydrogel system accelerates bone formation by promoting the expression of osteogenesis-related proteins such as RUNX2, osteopontin, and osteocalcin in bone marrow mesenchymal stem cells (BMSCs). Thus, this newly developed multifunctional microparticle-hydrogel system with vascularization, osteogenesis, and sustained release of growth factor demonstrates an effective therapeutic strategy toward LBD.
Collapse
Affiliation(s)
- Hongwei Xu
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Huanhuan Luo
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jiayu Chen
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohua Yu
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoming Ye
- Orthopaedic Oncology Services, Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Orthopaedic Research Institute, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Urbaniak T, García-Briones GS, Zhigunov A, Hladysh S, Adrian E, Lobaz V, Krunclová T, Janoušková O, Pop-Georgievski O, Kubies D. Quaternized Chitosan/Heparin Polyelectrolyte Multilayer Films for Protein Delivery. Biomacromolecules 2022; 23:4734-4748. [DOI: 10.1021/acs.biomac.2c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomasz Urbaniak
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Gabriela S. García-Briones
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Sviatoslav Hladysh
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Edyta Adrian
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Tereza Krunclová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
- Jan Purkyňe University in Ústí nad Labem, Faculty of Science, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| |
Collapse
|
8
|
Bednarczyk E. Chondrocytes In Vitro Systems Allowing Study of OA. Int J Mol Sci 2022; 23:ijms231810308. [PMID: 36142224 PMCID: PMC9499487 DOI: 10.3390/ijms231810308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is an extremely complex disease, as it combines both biological-chemical and mechanical aspects, and it also involves the entire joint consisting of various types of tissues, including cartilage and bone. This paper describes the methods of conducting cell cultures aimed at searching for the mechanical causes of OA development, therapeutic solutions, and methods of preventing the disease. It presents the systems for the cultivation of cartilage cells depending on the level of their structural complexity, and taking into account the most common solutions aimed at recreating the most important factors contributing to the development of OA, that is mechanical loads. In-vitro systems used in tissue engineering to investigate the phenomena associated with OA were specified depending on the complexity and purposefulness of conducting cell cultures.
Collapse
Affiliation(s)
- Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| |
Collapse
|
9
|
Liu G, Chen J, Wang X, Liu Y, Ma Y, Tu X. Functionalized 3D-Printed ST2/Gelatin Methacryloyl/Polcaprolactone Scaffolds for Enhancing Bone Regeneration with Vascularization. Int J Mol Sci 2022; 23:ijms23158347. [PMID: 35955478 PMCID: PMC9368581 DOI: 10.3390/ijms23158347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Growth factors were often used to improve the bioactivity of biomaterials in order to fabricate biofunctionalized bone grafts for bone defect repair. However, supraphysiological concentrations of growth factors for improving bioactivity could lead to serious side effects, such as ectopic bone formation, radiculitis, swelling of soft tissue in the neck, etc. Therefore, safely and effectively applying growth factors in bone repair biomaterials comes to be an urgent problem that needs to be addressed. In this study, an appropriate concentration (50 ng/mL) of Wnt3a was used to pretreat the 3D-bioprinting gelatin methacryloyl(GelMA)/polycaprolactone(PCL) scaffold loaded with bone marrow stromal cell line ST2 for 24 h. This pretreatment promoted the cell proliferation, osteogenic differentiation, and mineralization of ST2 in the scaffold in vitro, and enhanced angiogenesis and osteogenesis after being implanted in critical-sized mouse calvarial defects. On the contrary, the inhibition of Wnt/β-catenin signaling in ST2 cells reduced the bone repair effect of this scaffold. These results suggested that ST2/GelMA/PCL scaffolds pretreated with an appropriate concentration of Wnt3a in culture medium could effectively enhance the osteogenic and angiogenic activity of bone repair biomaterials both in vitro and in vivo. Moreover, it would avoid the side effects caused by the supraphysiological concentrations of growth factors. This functionalized scaffold with osteogenic and angiogenic activity might be used as an outstanding bone substitute for bone regeneration and repair.
Collapse
|
10
|
Abstract
Bioactive coatings are widely used and understood materials in engineering [...]
Collapse
|
11
|
Dukle A, Murugan D, Nathanael AJ, Rangasamy L, Oh TH. Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering? Polymers (Basel) 2022; 14:1627. [PMID: 35458377 PMCID: PMC9027654 DOI: 10.3390/polym14081627] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
According to the Global Burden of Diseases, Injuries, and Risk Factors Study, cases of bone fracture or injury have increased to 33.4% in the past two decades. Bone-related injuries affect both physical and mental health and increase the morbidity rate. Biopolymers, metals, ceramics, and various biomaterials have been used to synthesize bone implants. Among these, bioactive glasses are one of the most biomimetic materials for human bones. They provide good mechanical properties, biocompatibility, and osteointegrative properties. Owing to these properties, various composites of bioactive glasses have been FDA-approved for diverse bone-related and other applications. However, bone defects and bone injuries require customized designs and replacements. Thus, the three-dimensional (3D) printing of bioactive glass composites has the potential to provide customized bone implants. This review highlights the bottlenecks in 3D printing bioactive glass and provides an overview of different types of 3D printing methods for bioactive glass. Furthermore, this review discusses synthetic and natural bioactive glass composites. This review aims to provide information on bioactive glass biomaterials and their potential in bone tissue engineering.
Collapse
Affiliation(s)
- Amey Dukle
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dhanashree Murugan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Loganathan Rangasamy
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.); (D.M.); (L.R.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
12
|
Rahnamaee SY, Ahmadi Seyedkhani S, Eslami Saed A, Sadrnezhaad SK, Seza A. Bioinspired TiO2/Chitosan/HA Coatings on Ti Surfaces: Biomedical Improvement by Intermediate Hierarchical Films. Biomed Mater 2022; 17. [PMID: 35349998 DOI: 10.1088/1748-605x/ac61fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, to fix the first problem, different bioinspired coatings were applied to the titanium alloy surfaces in this study, including dual acid-etched, anodic TiO2 nanotubes array (TNTs), anodic hierarchical titanium oxide, micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite coating. XRD and FTIR analysis demonstrated that the in situ HA/chitosan nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120-150% after 10 days. The hierarchical coating demonstrated superhydrophilicity (θ ≈ 0°) and increased the wettability of the metallic Ti surface by more than 120%. The friction coefficient of all fabricated surfaces was within the range of natural bone's mechanical behavior. The intermediate hierarchical oxide layer increased the adhesion strength of the HA/chitosan coating by more than 60%. The Hierarchical middle oxide layer caused the mechanical stability of HA/CS during the 1000 m of friction test. The microhardness of HA/CS (22.5 HV) and micro-HA (25.5 HV) coatings was comparable to that of human bone. An intermediate hierarchical oxide-based mechanism for improving adhesion strength in HA/CS coatings was presented.
Collapse
Affiliation(s)
- Seyed Yahya Rahnamaee
- Sharif University of Technology, Department of Materials Science and Engineering , Sharif University of Technology , Azadi Ave , Tehran , Iran, Tehran, Tehran, 1458889694, Iran (the Islamic Republic of)
| | - Shahab Ahmadi Seyedkhani
- Materials Science and Engineering, Sharif University of Technology, Department of Materials Science and Engineering , Sharif University of Technology , Azadi Ave , Tehran , Iran, Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology , Azadi Ave , Tehran , Iran, Tehran, Tehran, 1458889694, Iran (the Islamic Republic of)
| | - Aylar Eslami Saed
- Sharif University of Technology, Azadi Ave., Sharif University of Technology, Tehran, Tehran, 11365-9466, Iran (the Islamic Republic of)
| | - S K Sadrnezhaad
- Materials Science and Engineering, Sharif University of Technology, PO Box 11365-9466, Tehran, Tehran, 1458889694, Iran (the Islamic Republic of)
| | - Ashkan Seza
- Sharif University of Technology, Azadi Ave., Sharif University of Technology, Tehran, Tehran, 11365-9466, Iran (the Islamic Republic of)
| |
Collapse
|
13
|
Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. Int J Mol Sci 2022; 23:ijms23052786. [PMID: 35269928 PMCID: PMC8911303 DOI: 10.3390/ijms23052786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
The unprecedented aging of the world's population will boost the need for orthopedic implants and expose their current limitations to a greater extent due to the medical complexity of elderly patients and longer indwelling times of the implanted materials. Biocompatible metals with multifunctional bioactive coatings promise to provide the means for the controlled and tailorable release of different medications for patient-specific treatment while prolonging the material's lifespan and thus improving the surgical outcome. The objective of this work is to provide a review of several groups of biocompatible materials that might be utilized as constituents for the development of multifunctional bioactive coatings on metal materials with a focus on antimicrobial, pain-relieving, and anticoagulant properties. Moreover, the review presents a summary of medications used in clinical settings, the disadvantages of the commercially available products, and insight into the latest development strategies. For a more successful translation of such research into clinical practice, extensive knowledge of the chemical interactions between the components and a detailed understanding of the properties and mechanisms of biological matter are required. Moreover, the cost-efficiency of the surface treatment should be considered in the development process.
Collapse
|
14
|
Bjelić D, Finšgar M. Bioactive coatings with anti-osteoclast therapeutic agents for bone implants: Enhanced compliance and prolonged implant life. Pharmacol Res 2022; 176:106060. [PMID: 34998972 DOI: 10.1016/j.phrs.2022.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
The use of therapeutic agents that inhibit bone resorption is crucial to prolong implant life, delay revision surgery, and reduce the burden on the healthcare system. These therapeutic agents include bisphosphonates, various nucleic acids, statins, proteins, and protein complexes. Their use in systemic treatment has several drawbacks, such as side effects and insufficient efficacy in terms of concentration, which can be eliminated by local treatment. This review focuses on the incorporation of osteoclast inhibitors (antiresorptive agents) into bioactive coatings for bone implants. The ability of bioactive coatings as systems for local delivery of antiresorptive agents to achieve optimal loading of the bioactive coating and its release is described in detail. Various parameters such as the suitable concentrations, release times, and the effects of the antiresorptive agents on nearby cells or bone tissue are discussed. However, further research is needed to support the optimization of the implant, as this will enable subsequent personalized design of the coating in terms of the design and selection of the coating material, the choice of an antiresorptive agent and its amount in the coating. In addition, therapeutic agents that have not yet been incorporated into bioactive coatings but appear promising are also mentioned. From this work, it can be concluded that therapeutic agents contribute to the biocompatibility of the bioactive coating by enhancing its beneficial properties.
Collapse
Affiliation(s)
- Dragana Bjelić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|