1
|
Di Prima G, Belfiore E, La Mantia C, Indelicato S, Avellone G, De Caro V. Characterization and Safety Assessment of a Novel Antioxidant Excipient from Sustainable Recovery of Grape Processing Waste Bentonite Designed to Develop a Thermosensitive Buccal Spray for Oral Cavity Wellness. Pharmaceutics 2024; 16:1612. [PMID: 39771590 PMCID: PMC11678101 DOI: 10.3390/pharmaceutics16121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Nowadays, sustainability efforts focus on extracting natural cosmeceutical ingredients, such as polyphenols, from agri-food waste, for example, black bentonite (BB). The aims of this work were to validate an antioxidant cosmetic ingredient obtained from the waste BB and embed it into an ad hoc designed oromucosal spray intended for oral cavity wellness. METHODS Focusing on sustainability, the study tested PEG200, propylene glycol, and their mixtures as unconventional and green extraction solvents, aligned with a waste-to-market approach. The extracts obtained by maceration were characterized through HPLC-DAD and HPLC-MS analyses, DPPH, Bradford, and Folin-Ciocalteu assays. The best P extract was further subjected to OECD-compliant in vitro validation as novel cosmetic raw material and used to prepare a thermosensitive buccal spray for oral daily care. RESULTS PEG200 enabled the obtainment of a cost-effective polyphenol-rich extract, which was validated as a safe, high value-added cosmetic secondary raw material. The extract was incorporated into a liquid thermosensitive buccal formulation, able to gel once at body temperature and enhance polyphenol accumulation into the oral mucosae even with short contact times. CONCLUSIONS BB is confirmed as a valuable source of polyphenols, and PEG200 represents an effective extraction solvent leading to a novel functional liquid excipient characterized by an OECD-compliant variegate pool of phenols. The buccal spray then proposed represents a valuable, friendly solution for daily oral care, as it is simple to use, as well as the in vitro and ex vivo tests carried out suggested its effectiveness.
Collapse
Affiliation(s)
- Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.L.M.); (S.I.); (G.A.); (V.D.C.)
| | - Elena Belfiore
- Dipartimento di Medicina di Precisione in Area Medica, Chirurgica e Critica (Me.Pre.C.C.), University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy;
| | - Cecilia La Mantia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.L.M.); (S.I.); (G.A.); (V.D.C.)
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.L.M.); (S.I.); (G.A.); (V.D.C.)
| | - Giuseppe Avellone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.L.M.); (S.I.); (G.A.); (V.D.C.)
- Centro Interdipartimentale di Ricerca Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari (RIVIVE), University of Palermo, 90128 Palermo, Italy
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.L.M.); (S.I.); (G.A.); (V.D.C.)
- Centro Interdipartimentale di Ricerca Riutilizzo Bio-Based Degli Scarti da Matrici Agroalimentari (RIVIVE), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
2
|
Morkovin E, Litvinov R, Koushner A, Babkov D. Resveratrol and Extra Virgin Olive Oil: Protective Agents Against Age-Related Disease. Nutrients 2024; 16:4258. [PMID: 39770880 PMCID: PMC11677889 DOI: 10.3390/nu16244258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Resveratrol and extra virgin olive oil are both recognized for their potential protective effects against age-related diseases. This overview highlights their mechanisms of action, health benefits, and the scientific evidence supporting their roles in promoting longevity and cognitive health. A literature search was conducted. Important findings related to the health benefits, mechanisms of action, and clinical implications of resveratrol and EVOO were summarized. Both resveratrol and EVOO have complementary mechanisms that may enhance their anti-aging effects. Resveratrol and EVOO are promising age-related disease-protective agents. Their antioxidant, anti-inflammatory, and neuroprotective properties contribute to improved health outcomes and longevity. Incorporating these compounds into a balanced diet may offer significant benefits for aging populations, supporting cognitive health and reducing the risk of chronic diseases. Continued research is essential to fully understand their mechanisms and optimize their use in clinical settings. Future research should focus on investigating the synergistic effects of resveratrol and EVOO when consumed together, as they may enhance each other's bioavailability and efficacy in promoting health; conducting extensive clinical trials to confirm the long-term benefits of these compounds in various populations, particularly in aging individuals; further exploring the molecular pathways through which resveratrol and EVOO exert their effects, including their interactions with gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Evgeny Morkovin
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
| | - Roman Litvinov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
- LLC «InnoVVita», Office 401, Room 2, 6 Komsomolskaya St., 400066 Volgograd, Russia
| | - Alexey Koushner
- Research Laboratory of Medical Imaging, Institute for Advanced Training of Medical Personnel, St. F. Engelsa, 58A, 394036 Voronezh, Russia
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
- LLC «InnoVVita», Office 401, Room 2, 6 Komsomolskaya St., 400066 Volgograd, Russia
| |
Collapse
|
3
|
Fratter A, Cignarella A, Ramaschi GE, Papetti A, Pellicorio V, Milanese C, Casettari L, Bolego C. A novel sodium caseinate lipid-based auto-emulsifying delivery system to increase resveratrol intestinal permeation: Characterization and in vitro assessment. Eur J Pharm Sci 2024; 203:106912. [PMID: 39303769 DOI: 10.1016/j.ejps.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
In recent years, nutraceuticals have emerged as a promising strategy for maintaining health and represent a high-growth market in Italy and across Europe. However, the lack of strict regulations regarding formulation requirements and proof of efficacy raises serious concerns about their poor bioavailability and, consequently, their uncertain health benefits. An emblematic example is t-resveratrol (RES), a cardioprotective stilbene polyphenol that undergoes extensive metabolism in the intestine and liver, resulting in a bioavailability of <1 %. This manuscript describes a novel technological matrix developed with the primary goal of improving RES oral bioavailability. This technology can be classified as a lipid-based autoemulsifying drug delivery system (LIBADDS), in which RES is thoroughly solubilized in a hot liquid phase composed of lipids and surfactants, and the mixture is further adsorbed onto a powder composed of polysaccharides and sodium caseinate (NaC), along with inert excipients, and then compressed. In this study, NaC was used for the first time to trigger pancreatin-mediated hydrolysis of an enteric-coated tablet, allowing micellar delivery of RES to the small intestine. The RES-containing tablets were characterized via differential scanning calorimetry (DSC) and X-ray diffraction (PXRD). The digested formulation, with simulated gastric and enteric fluids, was dimensionally assessed via dynamic light scattering (DLS). Finally, calculations of the bioaccessible fraction, dissolution tests, and in vitro permeability experiments using Caco-2 cell monolayers were carried out to preliminarily define the overall efficiency and applicability of this new technology in improving RES intestinal permeability.
Collapse
Affiliation(s)
- Andrea Fratter
- Department of Pharmaceutical and Pharmacological Sciences (DSFarm), University of Padova, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy.
| | - Andrea Cignarella
- Department of Medicine, University of Padova, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy
| | | | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy
| | | | - Chiara Milanese
- Department of Chemistry, Physical Chemistry Section, University of Pavia and C.S.G.I., Italy
| | - Luca Casettari
- Department of Biomolecular Sciences (DISB), School of Pharmacy, University of Urbino, Italy; Italian Society of Nutraceutical Formulators (SIFNut), Italy
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences (DSFarm), University of Padova, Italy
| |
Collapse
|
4
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
5
|
Wang Y, Ding N, Zhang Z. Effect of phosphoric acid containing polyvinylpyrrolidone as protective etchant for dentin bonding. J Prosthet Dent 2024; 131:743.e1-743.e6. [PMID: 38368144 DOI: 10.1016/j.prosdent.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
STATEMENT OF PROBLEM Phosphoric acid is commonly used in dentistry as an etchant but can result in excessive demineralization of dentin, a major contributor to the instability of dentin-bonded restorations. Nevertheless, research on the development of etchants that can reduce acid damage is sparse. PURPOSE The purpose of this in vitro study was to investigate the effects of polyvinylpyrrolidone-modified phosphoric acid on the dentin bonding of an etch-and-rinse adhesive. MATERIAL AND METHODS Protective etchants were prepared by adding polyvinylpyrrolidone to 35% phosphoric acid aqueous solutions: the 3 concentrations were 0.5% (P0.5% group), 1% (P1% group), and 2% (P2% group) w/v. The treatment agent of the control group (C) was 35% phosphoric acid gel. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), microhardness, microtensile bonding strength (µTBS), nanoleakage, and in situ zymography were used to evaluate the appearance of the protective etchant on dentin bonding. The results were analyzed with a 1-way ANOVA test (α=.05). RESULTS SEM showed no obviously exposed collagen fiber in the P1% and P2% groups. FTIR showed less demineralization of the dentin surface, and microhardness was higher after treatment with the protective etchant (P<.05). The µTBS of P1% (70 ±9.2 MPa) was the highest, and group C (44 ±5.8 MPa) was the lowest in all groups (P<.05). Moreover, there was weaker MMP activity in the P1% and P2% groups (P<.05). CONCLUSIONS This study demonstrated that the protective etchant effectively reduced demineralization, enhanced bond strength, and reduced nanoleakage and enzyme activity within the hybrid layer.
Collapse
Affiliation(s)
- Yaoxin Wang
- Graduate student, Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Ning Ding
- Professor, Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Zutai Zhang
- Professor, Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
6
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
7
|
Fathy Elhabal S, El-Nabarawi MA, Abdelaal N, Elrefai MFM, Ghaffar SA, Khalifa MM, Mohie PM, Waggas DS, Hamdan AME, Alshawwa SZ, Saied EM, Elzohairy NA, Elnawawy T, Gad RA, Elfar N, Mohammed H, Khasawneh MA. Development of canagliflozin nanocrystals sublingual tablets in the presence of sodium caprate permeability enhancer: formulation optimization, characterization, in-vitro, in silico, and in-vivo study. Drug Deliv 2023; 30:2241665. [PMID: 37537858 PMCID: PMC10946264 DOI: 10.1080/10717544.2023.2241665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/05/2023] Open
Abstract
Canagliflozin (CFZ) is a sodium-glucose cotransporter-2 inhibitor (SGLT2) that lowers albuminuria in type-2 diabetic patients, cardiovascular, kidney, and liver disease. CFZ is classified as class IV in the Biopharmaceutical Classification System (BCS) and is characterized by low permeability, solubility, and bioavailability, most likely attributed to hepatic first-pass metabolism. Nanocrystal-based sublingual formulations were developed in the presence of sodium caprate, as a wetting agent, and as a permeability enhancer. This formulation is suitable for children and adults and could enhance solubility, permeability, and avoid enterohepatic circulation due to absorption through the sublingual mucosa. In the present study, formulations containing various surfactants (P237, P338, PVA, and PVP K30) were prepared by the Sono-homo-assisted precipitation ion technique. The optimized formula prepared with PVP-K30 showed the smallest particle size (157 ± 0.32 nm), Zeta-potential (-18 ± 0.01), and morphology by TEM analysis. The optimized formula was subsequently formulated into a sublingual tablet containing Pharma burst-V® with a shorter disintegration time (51s) for the in-vivo study. The selected sublingual tablet improved histological and biochemical markers (blood glucose, liver, and kidney function), AMP-activated protein kinase (AMPK), and protein kinase B (AKT) pathway compared to the market formula, increased CFZ's antidiabetic potency in diabetic rabbits, boosted bioavailability by five-fold, and produced faster onset of action. These findings suggest successful treatment of diabetes with CFZ nanocrystal-sublingual tablets.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mohamed Fathi Mohamed Elrefai
- Department of Anatomy, Histology, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shrouk A. Ghaffar
- Medical Affairs Department, Caduceus Lane Healthcare, Alexandria, Egypt
| | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Dania S. Waggas
- Department of Pathological Science, Fakeeh College for Medical Science, Jeddah, Saudi Arabia
| | | | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Nahla A. Elzohairy
- Air Force Specialized Hospital, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| | - Tayseer Elnawawy
- Department of pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Rania A. Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, Egypt
| | - Nehal Elfar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Hanaa Mohammed
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | |
Collapse
|
8
|
Paterna A, Santonicola P, Di Prima G, Rao E, Raccosta S, Zampi G, Russo C, Moran O, Manno M, Di Schiavi E, Librizzi F, Carrotta R. α S1-Casein-Loaded Proteo-liposomes as Potential Inhibitors in Amyloid Fibrillogenesis: In Vivo Effects on a C. elegans Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3894-3904. [PMID: 37847529 PMCID: PMC10623563 DOI: 10.1021/acschemneuro.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023] Open
Abstract
According to the amyloid hypothesis, in the early phases of Alzheimer's disease (AD), small soluble prefibrillar aggregates of the amyloid β-peptide (Aβ) interact with neuronal membranes, causing neural impairment. Such highly reactive and toxic species form spontaneously and transiently in the amyloid building pathway. A therapeutic strategy consists of the recruitment of these intermediates, thus preventing aberrant interaction with membrane components (lipids and receptors), which in turn may trigger a cascade of cellular disequilibria. Milk αs1-Casein is an intrinsically disordered protein that is able to inhibit Aβ amyloid aggregation in vitro, by sequestering transient species. In order to test αs1-Casein as an inhibitor for the treatment of AD, it needs to be delivered in the place of action. Here, we demonstrate the use of large unilamellar vesicles (LUVs) as suitable nanocarriers for αs1-Casein. Proteo-LUVs were prepared and characterized by different biophysical techniques, such as multiangle light scattering, atomic force imaging, and small-angle X-ray scattering; αs1-Casein loading was quantified by a fluorescence assay. We demonstrated on a C. elegans AD model the effectiveness of the proposed delivery strategy in vivo. Proteo-LUVs allow efficient administration of the protein, exerting a positive functional readout at very low doses while avoiding the intrinsic toxicity of αs1-Casein. Proteo-LUVs of αs1-Casein represent an effective proof of concept for the exploitation of partially disordered proteins as a therapeutic strategy in mild AD conditions.
Collapse
Affiliation(s)
- Angela Paterna
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Pamela Santonicola
- Institute
of Biosciences and Bioresources, Division of Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy
- Department
of Medicine and Health Sciences, University
of Molise, 86100 Campobasso, Italy
| | - Giulia Di Prima
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Estella Rao
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Samuele Raccosta
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giuseppina Zampi
- Institute
of Biosciences and Bioresources, Division of Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Claudio Russo
- Department
of Medicine and Health Sciences, University
of Molise, 86100 Campobasso, Italy
- Consorzio
Interuniversitario in Ingegneria e Medicina (COIIM), Via F. De Sanctis, 86100 Campobasso, Italy
| | - Oscar Moran
- Institute
of Biophysics, National Research Council, Division of Genova, Via De Marini 6, 16149 Genova, Italy
| | - Mauro Manno
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Elia Di Schiavi
- Institute
of Biosciences and Bioresources, Division of Napoli, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Fabio Librizzi
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Rita Carrotta
- Institute
of Biophysics, National Research Council, Division of Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
9
|
Angellotti G, Di Prima G, D'Agostino F, Peri E, Tricoli MR, Belfiore E, Allegra M, Cancemi P, De Caro V. Multicomponent Antibiofilm Lipid Nanoparticles as Novel Platform to Ameliorate Resveratrol Properties: Preliminary Outcomes on Fibroblast Proliferation and Migration. Int J Mol Sci 2023; 24:ijms24098382. [PMID: 37176088 PMCID: PMC10179555 DOI: 10.3390/ijms24098382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The well-being of skin and mucous membranes is fundamental for the homeostasis of the body and thus it is imperative to treat any lesion quickly and correctly. In this view, polyphenols might assist and enhance a successful wound healing process by reducing the inflammatory cascade and the production of free radicals. However, they suffer from disadvantageous physico-chemical properties, leading to restricted clinical use. In this work, a complex mixture of PEGylated lipid, Glyceryl monoester, 18-β-Glycyrrhetinic Acid and Menthol was designed to entrap Resveratrol (RSV) as the active ingredient and further produce lipid nanoparticles (LNPs) by homogenization followed by high-frequency sonication. The nanosystem was properly characterized in terms of particle size (DLS, SEM), zeta potential, drug loading, antioxidant power (DPPH), release behaviour, cytocompatibility, wound healing and antibiofilm properties. The optimized lipid mixture was homogeneous, melted at 57-61 °C and encapsulated amorphous RSV (4.56 ± 0.04% w/w). The RSV-loaded LNPs were almost monodispersed (PDI: 0.267 ± 0.010), with nanometric size (162.86 ± 3.12 nm), scavenger properties and suitable DR% and LE% values (96.82 ± 1.34% and 95.17 ± 0.25%, respectively). The release studies were performed to simulate the wound conditions: 1-octanol to mimic the lipophilic domains of biological tissues (where the First Order kinetic was observed) and citrate buffer pH 5.5 according to the inflammatory wound exudate (where the Korsmeyer-Peppas kinetic was followed). The biological and microbiological evaluations highlighted fibroblast proliferation and migration effects as well as antibiofilm properties at extremely low doses (LNPs: 22 μg/mL, corresponding to RSV 5 µM). Thus, the proposed multicomponent LNPs could represent a valuable RSV delivery platform for wound healing purposes.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Fabio D'Agostino
- Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment, National Research Council (IAS-CNR), Campobello di Mazara, 91021 Trapani, Italy
| | - Emanuela Peri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Maria Rita Tricoli
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence G. D'Alessandro, Section of Microbiology, University of Palermo, 90127 Palermo, Italy
| | - Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
10
|
Chemopreventive and Anticancer Role of Resveratrol against Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:pharmaceutics15010275. [PMID: 36678905 PMCID: PMC9866019 DOI: 10.3390/pharmaceutics15010275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevailing and aggressive head and neck cancers, featuring high morbidity and mortality. The available conventional treatments suffer from several adverse effects and are often inefficient in terms of their survival rates. Thus, seeking novel therapeutic agents and adjuvants is of the utmost importance for modern society. Natural polyphenolic compounds have recently emerged as promising chemopreventive and anticancer agents. Specifically, the natural compound resveratrol (RSV) has recently gained momentum for this purpose. RSV is useful for treating OSCC due to its antiproliferative, antimetastatic, and proapoptotic effects. Additionally, RSV acts against tumor cells while synergically cooperating with chemotherapeutics, overcoming drug resistance phenomena. Despite these wide-spectrum effects, there are few specific investigations regarding RSV's effects against OSCC animal models that consider different routes and vehicles for the administration of RSV. Interestingly, an injectable RSV-loaded liposome-based formulation was proven to be effective against both in vitro and in vivo OSCC models, demonstrating that the development of RSV-loaded drug delivery systems for systemic and/or loco-regional applications may be the turning point in oral cancer treatment, leading to benefits from both RSV's properties as well as from targeted delivery. Given these premises, this review offers a comprehensive overview of the in vitro and in vivo effects of RSV and its main derivative, polydatin (PD), against OSCC-related cell lines and animal models, aiming to guide the scientific community in regard to RSV and PD use in the treatment of oral precancerous and cancerous lesions.
Collapse
|
11
|
Green Extraction of Polyphenols from Waste Bentonite to Produce Functional Antioxidant Excipients for Cosmetic and Pharmaceutical Purposes: A Waste-to-Market Approach. Antioxidants (Basel) 2022; 11:antiox11122493. [PMID: 36552701 PMCID: PMC9774313 DOI: 10.3390/antiox11122493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In an ever-growing perspective of circular economy, the development of conscious, sustainable and environmental-friendly strategies to recycle the waste products is the key point. The scope of this work was to validate the waste bentonite from the grape processing industries as a precious matrix to extract polyphenols by applying a waste-to-market approach aimed at producing novel functional excipients. The waste bentonite was recovered after the fining process and opportunely pre-treated. Subsequently, both the freeze dried and the so-called "wet" bentonites were subjected to maceration. PEG200 and Propylene Glycol were selected as solvents due to their ability to dissolve polyphenols and their wide use in the cosmetic/pharmaceutical field. The extracts were evaluated in terms of yield, density, pH after water-dilution, total phenolic (Folin-Ciocalteu) and protein (Bradford) contents, antioxidant power (DPPH), amount of some representative polyphenols (HPLC-DAD), cytocompatibility and stability. Both solvents validated the bentonite as a valuable source of polyphenols and led to colored fluids characterized by an acidic pH after water-dilution. The best extract was obtained from the wet bentonite with PEG200 and highlighted the highest phenolic content and consequently the strongest antioxidant activity. Additionally, it displayed proliferative properties and resulted almost stable over time. Hence, it might be directly used as polyphenols-enriched functional novel raw material for cosmetic and pharmaceutics purposes.
Collapse
|
12
|
De Caro V, Angellotti G, D’Agostino F, Di Prima G. Buccal Thin Films as Potent Permeation Enhancers for Cytisine Transbuccal Delivery. MEMBRANES 2022; 12:1169. [PMID: 36422161 PMCID: PMC9694529 DOI: 10.3390/membranes12111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Cytisine (CYT) is a powerful anti-smoking compound which could greatly benefit from transbuccal delivery because of both its unfavorable pharmacokinetics after oral administration and its intrinsic ability to permeate the buccal mucosa. This work aims to design CYT-loaded buccal thin films suitable for transbuccal drug delivery due to its capability of promoting the interaction between CYT and the buccal membrane. The solvent casting method was employed to prepare several thin films combining various excipients such as matrixing polymers, mucoadhesion agents, plasticizers and other compounds as humectants and sweeteners, component ratios and solvents. A total of 36 compositions was prepared and four of them emerged as the most promising in terms of aspect and flexibility. They all demonstrated homogeneity, thinness, low swelling degree, and controlled drug release according to the Power Law and Peppas-Sahlin mathematical models. Mainly, they proved able to interact with the ex vivo porcine buccal mucosa producing mucoadhesive effects, and act as potent permeation enhancers. In particular, Film B emerged as suitable as it produced a 10.6-fold Kp enhancement and a great Js value (52.33 μg/cm2·h-1), even when compared to highly concentrated CYT solutions.
Collapse
Affiliation(s)
- Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Angellotti
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy
| | - Fabio D’Agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS—CNR), Campobello di Mazara, 91021 Trapani, Italy
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
13
|
Spray-Dried Cytisine-Loaded Matrices: Development of Transbuccal Sustained-Release Tablets as a Promising Tool in Smoking Cessation Therapy. Pharmaceutics 2022; 14:pharmaceutics14081583. [PMID: 36015209 PMCID: PMC9416034 DOI: 10.3390/pharmaceutics14081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Cytisine (CYT) has emerged as a promising molecule to treat nicotine addiction, since it acts as a partial agonist of nicotinic acetylcholine receptors. However, its unfavorable pharmacokinetic properties lead to multiple administrations per day, reducing the patient’s compliance and increasing the side effects. To overcome these drawbacks, CYT buccal administration is here proposed. Firstly, CYT stability in the buccal environment was assessed and its intrinsic ability to permeate/penetrate the tissue was determined by applying CYT solutions at increasing concentrations. Furthermore, a spray-drying method was selected and optimized as it is an eco-friendly, easily scalable and effective technique to obtain uniform and reproducible CYT-loaded (5% w/w) pharmaceutical powders, which were directly compressed, thus obtaining different buccal delivery systems (BDSs). The obtained BDSs were homogeneous and reproducible and embedded CYT in its amorphous form. The mechanism of CYT release was evaluated in vitro and found to be mainly driven by a Fickian diffusion phenomenon. Predominantly, the ex vivo permeation assays highlighted the ability of the BDSs to enhance CYT permeation, also producing high drug fluxes through the mucosa. Speculative mathematical evaluations based on the already-known CYT pharmacokinetic parameters showed that CYT-loaded BDSs could potentially be sufficient to obtain a therapeutic effect, thus making the reported formulations suitable candidates for further in vivo trials.
Collapse
|
14
|
Calderon-Jacinto R, Matricardi P, Gueguen V, Pavon-Djavid G, Pauthe E, Rodriguez-Ruiz V. Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules 2022; 12:biom12060780. [PMID: 35740905 PMCID: PMC9221280 DOI: 10.3390/biom12060780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
This work focuses on the development and evaluation of a dual nanostructured lipid carrier (NLC)/Carbopol®-based hydrogel system as a potential transporter for the topical delivery of curcumin to the skin. Two populations of different sized negatively charged NLCs (P1, 70–90 nm and P2, 300–350 nm) were prepared and characterized by means of dynamic light scattering. NLCs presented an ovoid platelet shape confirmed by transmission electron microscopy techniques. Curcumin NLC entrapment efficiency and release profiles were assessed by HPLC (high pressure liquid chromatography) and spectrophotometric methods. Preservation and enhancement of curcumin (CUR) antioxidant activity in NLCs (up to 7-fold) was established and cell viability assays on fibroblasts and keratinocytes indicated that CUR-NLCs are non-cytotoxic for concentrations up to 10 μM and exhibited a moderate anti-migration/proliferation effect (20% gap reduction). CUR-NLCs were then embedded in a Carbopol®-based hydrogel without disturbing the mechanical properties of the gel. Penetration studies on Franz diffusion cells over 24 h in CUR-NLCs and CUR-NLCs/gels demonstrated an accumulation of CUR in Strat-M® membranes of 22% and 5%, respectively. All presented data support the use of this new dual CUR-NLC/hydrogel system as a promising candidate for adjuvant treatment in topical dermal applications.
Collapse
Affiliation(s)
- Rosa Calderon-Jacinto
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, 99 Av. Jean-Baptiste Clément, 93430 Villetaneuse, France; (V.G.); (G.P.-D.)
| | - Emmanuel Pauthe
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
| | - Violeta Rodriguez-Ruiz
- ERRMECe Laboratory, Biomaterials for Health Group, CY Cergy Paris Université, Maison Internationale de la Recherche, I MAT, 1 rue Descartes, 95031 Neuville sur Oise, France; (R.C.-J.); (E.P.)
- Correspondence: ; Tel.: +33-01-3425-2830
| |
Collapse
|