1
|
Tincu R, Mihaila M, Bostan M, Istrati D, Badea N, Lacatusu I. Hybrid Albumin-Decorated Lipid-Nanocarrier-Mediated Delivery of Polyphenol-Rich Sambucus nigra L. in a Potential Multiple Antitumoural Therapy. Int J Mol Sci 2024; 25:11206. [PMID: 39456987 PMCID: PMC11508305 DOI: 10.3390/ijms252011206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The current research attempted to address the suitability of bioactive Sambucus nigra extract entrapped in albumin-decorated nanostructured lipid carriers (NLCs) as a promising "adjuvant" in improving tumour penetration for multiple antitumour therapy. The new hybrid albumin-decorated NLCs were characterised based on, e.g., the particle size, zeta electrokinetic potential, SambucusN entrapment efficiency, and fluorescence spectroscopy and tested for different formulation parameters. The antioxidant activity of NLC-SambucusN was significantly enhanced by a bovine serum albumin (BSA) polymer coating. According to the real-time cell analysis (RTCA) results, NLC-I-SambucusN-BSA behaved similarly to the chemotherapeutic drug, cisplatin, with cell viability for LoVo tumour cells of 21.81 ± 1.18%. The new albumin-NLC-SambucusN arrested cancer cells in G1 and G2 cycles and intensified the apoptosis process in both early and late phases. An advanced induction, over 50% apoptosis in LoVo colon cells, was registered for 50 μg/mL of NLC-II-SambucusN-BSA, a fourfold increase compared to that of untreated cells. RTCA and flow cytometry results showed that concentrations of the hybrid NLC-SambucusN up to 50 μg/mL do not affect the proliferation of normal HUVEC cells. This approach provides insightful information regarding the involvement of phytochemicals in future therapeutic strategies. Albumin-decorated NLCs can be considered a noteworthy strategy to be connected to antitumour therapeutic protocols.
Collapse
Affiliation(s)
- Robert Tincu
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai No. 16, 040314 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independetei, 050096 Bucharest, Romania
| | - Daniela Istrati
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| |
Collapse
|
2
|
Ali A, Emad NA, Sultana N, Ali H, Jahan S, Aqil M, Mujeeb M, Sultana Y. Medicinal potential of embelin and its nanoformulations: An update on the molecular mechanism and various applications. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1228-1242. [PMID: 39229578 PMCID: PMC11366951 DOI: 10.22038/ijbms.2024.77888.16850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/13/2024] [Indexed: 09/05/2024]
Abstract
Natural herbs have garnered significant research recently as their components target multiple disease signaling pathways, making them highly potential for various disease prevention and treatment. Embelin, a naturally occurring benzoquinone isolated from Embelia ribes, has shown promising biological activities such as antitumor, antidiabetic, anti-oxidant, and antimicrobial. Various mechanisms have been reported, including monitoring genes that synchronize the cell cycle, up-regulating multiple anti-oxidant enzymes, suppressing genes that prevent cell death, influencing transcription factors, and preventing inflammatory biomarkers. However, the hydrophobic nature of embelin leads to poor absorption and limits its therapeutic potential. This review highlights a wide range of nanocarriers used as delivery systems for embelin, including polymeric nanoparticles, liposomes, nanostructured lipid carriers, micelles, nanoemulsion, and metallic nanoparticles. These embelin nanomedicine formulations have been developed in preclinical studies as a possible treatment for many disorders and characterized using various in vitro, ex vivo, and in vivo models.
Collapse
Affiliation(s)
- Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Nasr A. Emad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Hamad Ali
- Department of Phytochemistry and Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohd Mujeeb
- Department of Phytochemistry and Pharmacognosy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
3
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
4
|
Crișan S, Pop AL, Lacatusu I, Badea N, Mustaciosu C, Radu M, Varlas VN, Peneş ON, Ciobanu AM, Ghica M, Voicu SN, Udeanu DI. Safety of Innovative Nanotechnology Oral Formulations Loaded with Bioactive Menopause Molecules: Influence of Genotoxicity and Biochemical Parameters on a Menopausal Rat Model. Nutrients 2023; 15:4951. [PMID: 38068809 PMCID: PMC10708031 DOI: 10.3390/nu15234951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, nanoparticles have gained significant importance due to their unique properties, such as pharmacological, electrical, optical, and magnetic abilities, contributing to the growth of the science and technology sector. Particular naturally derived biomolecules with beneficial effects on menopause disorder have been the subject of studies of pharmaceutical formulation to obtain alternative pharmaceutical forms with increased bioavailability and without side effects, as in nanostructured lipid carriers (NLCs) loaded with such active ingredients. In the present study, one stage of a broader project, we have performed pharmacotoxicology studies for six combinatory innovative nanocapsule pharmaceutical forms containing active natural biomolecules before considering them as oral formulas for (1) in vitro toxicity studies on culture cells and (2) in vivo preclinical studies on a surgically induced menopause model of Wistar female rats, and the influence of the NLCs on key biochemical parameters: lipid profile (TG, Chol, HDL), glycemic markers (Gli), bone markers (Pac, Palc, Ca, phosphorus), renal markers (Crea, urea, URAC), inflammation (TNF), oxidative stress (GSH, MDA), and estrogen-progesterone hormonal profile. The micronucleus test did not reveal the genotoxicity of the tested compounds; the menopause model showed no significant safety concerns for the six tested formulas evaluated using the blood biochemical parameters; and the results showed the potential hypoglycemic, hypolipidemic, hypouricemic, and antioxidant potential of one of the tested formulas containing nano diosgenin and glycyrrhizic acid.
Collapse
Affiliation(s)
- Simona Crișan
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.C.); (A.L.P.); (A.M.C.); (M.G.); (D.I.U.)
- R&D Center, AC HELCOR, Victor Babes St., 430082 Baia Mare, Romania
| | - Anca Lucia Pop
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.C.); (A.L.P.); (A.M.C.); (M.G.); (D.I.U.)
| | - Ioana Lacatusu
- Faculty of Applied Chemistry and Materials Science, The Polytechnic University of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (N.B.)
| | - Nicoleta Badea
- Faculty of Applied Chemistry and Materials Science, The Polytechnic University of Bucharest, Polizu No 1, 011061 Bucharest, Romania; (I.L.); (N.B.)
| | - Cosmin Mustaciosu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, 077125 Bucharest, Romania; (C.M.); (M.R.)
| | - Mihai Radu
- Horia Hulubei National Institute for Physics and Nuclear Engineering IFIN-HH, 077125 Bucharest, Romania; (C.M.); (M.R.)
| | - Valentin Nicolae Varlas
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Ovidiu Nicolae Peneş
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Anne Marie Ciobanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.C.); (A.L.P.); (A.M.C.); (M.G.); (D.I.U.)
| | - Manuela Ghica
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.C.); (A.L.P.); (A.M.C.); (M.G.); (D.I.U.)
| | - Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania;
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (S.C.); (A.L.P.); (A.M.C.); (M.G.); (D.I.U.)
| |
Collapse
|
5
|
Iordache TA, Badea N, Mihaila M, Crisan S, Pop AL, Lacatusu I. Polygonum cuspidatum Loaded Nanostructured Lipid Carriers for Dual Inhibition of TNF-α- and IL-6 Cytokines and Free Radical Species. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093492. [PMID: 37176373 PMCID: PMC10179770 DOI: 10.3390/ma16093492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The main objective of this study was the testing of natural compounds, such as Polygonum cuspidatum (PgnC) loaded into nanostructured lipid carriers (NLC), which can act as a "double-edged sword" aimed at simultaneously combating dangerous free radicals and inhibiting pro-inflammatory cytokines. Resveratrol-rich PgnC extract was paired with another phytochemical, Diosgenin (DSG), in NLC. The lipid nanocarriers carrying both herbals (NLC-DSG-PgnC) had spherical diameters (100 ± 2 50 nm), a polydispersity index of ~0.15, and electrokinetic potentials greater than -46.5 mV. Entrapment efficiencies of 65% for PgnC and 87% for DSG were determined by chromatographic and UV-Vis spectroscopy assays. Cell cytotoxicity analysis proved that 50 µg/mL of NLC-PgnC and dual-NLC ensured a biocompatible effect like the untreated cells. The dual-NLC assured a much slower in vitro release of DSG and PgnC (67% PgnC and 48% DSG) than the individual-NLC (78% PgnC and 47% DSG) after 4 h of experiments. NLC encapsulating PgnC presented a superior ability to capture cationic radicals: 74.5 and 77.9%. The chemiluminescence results pointed out the non-involvement of DSG in stopping oxygenated free radicals, while the antioxidant activity was maintained at a level higher than 97% for dual-NLC. NLC-DSG-PgnC ensured a promising capacity for inhibition of pro-inflammatory cytokine IL-6, ranging from 91.9 to 94.9%.
Collapse
Affiliation(s)
- Teodora-Alexandra Iordache
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
- National Research & Development Institute for Food Bioresources-IBA Bucharest, 6th Dinu Vintila Street, 021101 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Simona Crisan
- R.D. Center, A.C. HELCOR, Victor Babes Street, 430082 Baia Mare, Romania
| | - Anca Lucia Pop
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| |
Collapse
|
6
|
Tincu R, Mihaila M, Bostan M, Teodorescu F, Istrati D, Badea N, Lacatusu I. Novel Bovine Serum Albumin-Decorated-Nanostructured Lipid Carriers Able to Modulate Apoptosis and Cell-Cycle Response in Ovarian, Breast, and Colon Tumoral Cells. Pharmaceutics 2023; 15:1125. [PMID: 37111611 PMCID: PMC10144507 DOI: 10.3390/pharmaceutics15041125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
A novel nanoscale approach was developed for the improved cellular internalization of hybrid bovine serum albumin-lipid nanocarriers loaded with piperine (NLC-Pip-BSA) in different tumor cells. The effect of the BSA-targeted-NLC-Pip and untargeted-NLC-Pip on the viability, proliferation, and levels of cell-cycle damage and apoptosis in the colon (LoVo), ovarian (SKOV3) and breast (MCF7) adenocarcinoma cell lines was comparatively discussed. NLCs were characterized concerning particle size, morphology, zeta potential, phytochemical encapsulation efficiency, ATR-FTIR, and fluorescence spectroscopy. The results showed that NLC-Pip-BSA showed a mean size below 140 nm, a zeta potential of -60 mV, and an entrapment efficiency of 81.94% for NLC-Pip and 80.45% for NLC-Pip-BSA. Fluorescence spectroscopy confirmed the coating of the NLC with the albumin. By MTS and RTCA assays, NLC-Pip-BSA showed a more pronounced response against the LoVo colon cell line and MCF-7 breast tumor cell lines than against the ovarian SKOV-3 cell line. Flow cytometry assay demonstrated that the targeted NLC-Pip had more cytotoxicity and improved apoptosis than the untargeted ones in MCF-7 tumor cells (p < 0.05). NLC-Pip caused a significant increase in MCF-7 breast tumor cell apoptosis of ~8X, while NLC-Pip-BSA has shown an 11-fold increase in apoptosis.
Collapse
Affiliation(s)
- Robert Tincu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No. 285, 030304 Bucharest, Romania
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Florina Teodorescu
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Daniela Istrati
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Biotechnologies, University POLITEHNICA of Bucharest, Polizu No. 1, 011061 Bucharest, Romania
| |
Collapse
|
7
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Kumari S, Goyal A, Sönmez Gürer E, Algın Yapar E, Garg M, Sood M, Sindhu RK. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022; 14:pharmaceutics14051091. [PMID: 35631677 PMCID: PMC9146286 DOI: 10.3390/pharmaceutics14051091] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based medicines have received a lot of attention in recent years. Such medicines have been employed to treat medical conditions since ancient times, and in those times only the observed symptoms were used to determine dose accuracy, dose efficacy, and therapy. Rather than novel formulations, the current research work on plant-based medicines has mostly concentrated on medicinal active phytoconstituents. In the past recent decades, however, researchers have made significant progress in developing "new drug delivery systems" (NDDS) to enhance therapeutic efficacy and reduce unwanted effects of bioactive compounds. Nanocapsules, polymer micelles, liposomes, nanogels, phytosomes, nano-emulsions, transferosomes, microspheres, ethosomes, injectable hydrogels, polymeric nanoparticles, dendrimers, and other innovative therapeutic formulations have all been created using bioactive compounds and plant extracts. The novel formulations can improve solubility, therapeutic efficacy, bioavailability, stability, tissue distribution, protection from physical and chemical damage, and prolonged and targeted administration, to name a few. The current study summarizes existing research and the development of new formulations, with a focus on herbal bioactive components.
Collapse
Affiliation(s)
- Sapna Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Evren Algın Yapar
- Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey; (E.S.G.); (E.A.Y.)
| | - Madhukar Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
| | - Meenakshi Sood
- Chitkara School of Health Sciences, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rakesh K. Sindhu
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.K.); (A.G.); (M.G.)
- Correspondence:
| |
Collapse
|