1
|
Binacchi F, Cirri D, Bimbi E, Busto N, Pratesi A, Biver T. Pd(II)/1,10-phenanthroline complexes bearing arene ligands: On the role of N- vs O-coordination to tune their cellular activity and binding ability towards DNA and RNA. J Inorg Biochem 2025; 262:112749. [PMID: 39366102 DOI: 10.1016/j.jinorgbio.2024.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Three Pd(II)-based complexes of 1,10-phenanthroline and N- or O-coordinating ligands have been synthesised and tested with different relevant biosubstrates like double-stranded DNA, double and triple helix of RNA, DNA G-quadruplexes of different conformations and bovine serum albumin. Here a correlation between N- vs O-coordinating elements and binding mechanism emerged, where the N-coordinating ligands proved to be the most promising. These outcomes were confirmed also in the cellular experiments. The Pd(II) complex with naphthalene-1,8-diamine is the one that is able to be carried by BSA, to strongly bind nucleic acids, to produce reactive oxygen species (ROS) and to show the best cellular performances (poorly toxic towards healthy cells and highly toxic against the cisplatin-resistant cancer cell line). On the opposite, the complex with benzene-1,2-diolate may be sequestered by BSA, weakly binds nucleic acids, does not produce ROS and shows poor cellular activity. The complex with benzene-1,2-diamine stays in between. Other mechanistic details are discussed which show that the biophysical behaviour is the sum of the contribution of aromaticity, charge and N- or O-coordination.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Eleonora Bimbi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Audzeyenka I, Piwkowska A, Rogacka D, Makowski M, Kowalik M. Biological Evaluation of a Rhodium(III) Bipyridylsulfonamide Complex: Effects on Mitochondrial Dynamics and Cytoskeletal Remodeling in Breast Cancer Cells. J Med Chem 2024; 67:21364-21379. [PMID: 39576967 DOI: 10.1021/acs.jmedchem.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex (2) and its ligand (L) for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells. Compound 2 also increased glycolysis in both lines, suggesting a metabolic shift. Mitochondrial size and shape were altered, particularly in SKBr3 cells. Additionally, both compounds reduced cancer cell migration by disrupting actin cytoskeleton organization and the Rac1/VASP signaling pathway. These findings suggest that the rhodium(III) bipyridylsulfonamide complex selectively impairs mitochondrial dynamics and cell migration in cancer cells while sparing healthy cells, providing insight into its mechanism of action and toward its use as targeted anticancer therapy. This study lays the groundwork for future in vivo studies and further optimization of these metal-based therapeutics for clinical applications.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, Department of Bioinorganic Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
| | - Mateusz Kowalik
- Faculty of Chemistry, Department of Bioinorganic Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Dutta J, Bera A, Upadhyay A, Yadav AK, Banerjee S, Sarkar T, Hussain A. Photoactivated Anticancer Activity of Cobalt(III) Complexes with Naturally Occurring Flavonoids Chrysin and Silibinin. Chembiochem 2024; 25:e202400484. [PMID: 38962951 DOI: 10.1002/cbic.202400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
Photoactive metal complexes of bioessential transition metal ions with natural chelators are gaining interest as photocytotoxic agents for cancer photodynamic therapy (PDT). We report six new cobalt(III) complexes with a mixed-ligand formulation [Co(B)2(L)](ClO4)2 (Co1-Co6), where B represents a N,N-donor α-diimine ligand, namely, phenanthroline (phen; Co1, Co2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq; Co3, Co4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz; Co5, Co6), and L is the monoanionic form of the naturally occurring flavonoids chrysin (chry; Co1, Co3, Co5) and silibinin (sili; Co2, Co4, Co6). Complexes displayed a d-d absorption band within 500-700 nm and exhibited excellent dark and photostability in solution. Cytotoxicity studies indicated significant activity of Co5 and Co6 against cervical (HeLa) and lung (A549) cancer cells under visible light (400-700 nm) irradiation giving low micromolar IC50 values (2.3-3.4 μM, phototoxicity index~15-30). The complexes demonstrated notably low toxicity against normal HPL1D lung epithelial cells. Flow cytometry assay revealed an apoptotic mode of cell damage triggered by the complexes when irradiated. ROS generation assay indicated the involvement of singlet oxygen species in the cell death mechanism when irradiated with light. Overall, complexes Co5 and Co6 with coordinated dipyridophenazine and flavonoid ligands are potential candidates for cancer PDT applications.
Collapse
Affiliation(s)
- Jyotirmoy Dutta
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, 781001, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Tukki Sarkar
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, 781001, India
| |
Collapse
|
4
|
Binacchi F, Giorgi E, Salvadori G, Cirri D, Stifano M, Donati A, Garzella L, Busto N, Garcia B, Pratesi A, Biver T. Exploring the interaction between a fluorescent Ag(I)-biscarbene complex and non-canonical DNA structures: a multi-technique investigation. Dalton Trans 2024; 53:9700-9714. [PMID: 38775704 DOI: 10.1039/d4dt00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Ester Giorgi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Aurora Donati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Linda Garzella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain
| | - Begona Garcia
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
5
|
Ugwu DI, Conradie J. Anticancer properties of complexes derived from bidentate ligands. J Inorg Biochem 2023; 246:112268. [PMID: 37301166 DOI: 10.1016/j.jinorgbio.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC50 values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Chemistry, University of the Free State, South Africa; Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, South Africa.
| |
Collapse
|
6
|
Hu X, Guo L, Liu M, Zhang Q, Gong Y, Sun M, Feng S, Xu Y, Liu Y, Liu Z. Increasing Anticancer Activity with Phosphine Ligation in Zwitterionic Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes. Inorg Chem 2022; 61:20008-20025. [PMID: 36426422 DOI: 10.1021/acs.inorgchem.2c03279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis and biological assessment of neutral or cationic platinum group metal-based anticancer complexes have been extremely studied, whereas there are few reports on the corresponding zwitterionic complexes. Herein, the synthesis, characterization, and bioactivity of zwitterionic half-sandwich phosphine-imine iridium(III), rhodium(III), and ruthenium(II) complexes were presented. The sulfonated phosphine-imine ligand and a group of zwitterionic half-sandwich P,N-chelating organometallic complexes were fully characterized by nuclear magnetic resonance (NMR), mass spectrum (electrospray ionization, ESI), elemental analysis, and X-ray crystallography. The solution stability of these complexes and their spectral properties were also determined. Notably, almost all of these complexes showed enhanced anticancer activity against model HeLa and A549 cancer cells than the corresponding zwitterionic pyridyl-imine N,N-chelating iridium(III) and ruthenium(II) complexes, which have exhibited inactive or low active in our previous work. The increase in the lipophilic property and intracellular uptake levels of these zwitterionic P,N-chelating complexes appeared to be associated with their superior cytotoxicity. In addition, these complexes showed biomolecular interactions with bovine serum albumin (BSA). The flow cytometry studies indicated that the representative complex Ir1 could induce early-stage apoptosis in A549 cells. Further, confocal microscopy imaging analysis displayed that Ir1 entered A549 cells through the energy-dependent pathway, targeted lysosome, and could cause lysosomal damage. In particular, these complexes could impede cell migration in A549 cells.
Collapse
Affiliation(s)
- Xueyan Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengqi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Qiuya Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengru Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shenghan Feng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Youzhi Xu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
7
|
Chang CW, Lee CR, Lee GH, Lu KL. The straightforward synthesis of N-coordinated ruthenium 4-aryl-1,2,3-triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex with terminal phenylacetylenes and non-covalent aromatic interactions in structures. RSC Adv 2022; 12:24830-24838. [PMID: 36128372 PMCID: PMC9430631 DOI: 10.1039/d2ra04835c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The straightforward preparation of N-coordinated ruthenium triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex [Ru]-N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with a series of terminal phenylacetylenes is reported. The reaction products, N(2)-bound ruthenium 4-aryl-1,2,3-triazolato complexes such as [Ru]N3C2H(4-C6H4CN) (2), [Ru]N3C2H(4-C6H4CHO) (3), [Ru]N3C2H(4-C6H4F) (4), [Ru]N3C2H(Ph) (5) and [Ru]N3C2H(4-C6H4CH3) (6) were produced from 4-ethynylbenzonitrile, 4-ethynylbenzaldehyde, 1-ethynyl-4-fluorobenzene, phenylacetylene and 4-ethynyltoluene, respectively, at 80 °C or above under an atmosphere of air. To the best of our knowledge, this is the first example of the preparation of N-coordinated ruthenium aryl-substituted 1,2,3-triazolato complexes by the [3 + 2] cycloaddition of a metal-coordinated azido ligand and a terminal aryl acetylene, less electron-deficient terminal aryl alkynes. All of the compounds have been fully characterized and the structures of complexes 2, 3, 5 and 6 were confirmed by single-crystal X-ray diffraction analysis. Each compound participates in non-covalent aromatic interactions in the solid-state structure which can be favorable in the binding of DNA/biomolecular targets and has shown great potential in the development of biologically active anticancer drugs.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University Linkou New Taipei City 24449 Taiwan
| | - Chi-Rung Lee
- Department of Applied Materials Science and Technology, Minghsin University of Science and Technology Hsinchu 30401 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242 Taiwan
| |
Collapse
|
8
|
Mono- and Di-thiocarbonato complexes of ruthenium CpRu(CO)2SC(E)E′R (E, E′=O, S). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|