1
|
Wang M, Fang Z, Yang K, Guo X, Li S, Liu A. An Exploration of Dissolution Tests for Inhalation Aerosols. AAPS PharmSciTech 2024; 25:230. [PMID: 39354249 DOI: 10.1208/s12249-024-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
This study aimed to establish a feasible dissolution method for inhalation aerosols. A method of collecting fine particles was investigated to capture aerosol particles less than 4 μm in diameter for dissolution tests. This dose collection method enabled the aerosol particles to be uniformly distributed on the glass fiber filter, thus considerably reducing particle agglomeration. Budesonide was used as a model drug. The aerodynamic particle size distribution (APSD) of the meter-dose inhaler (MDI) was compared by replacing actuators with different orifice sizes. Dissolution tests were conducted on fine particle doses collected using various actuators, and the dissolution profiles were modeled. The fine particle dose decreased with an increasing orifice size of the actuator. Actuators with different orifice sizes would affect the dissolution behavior of inhaled drugs. This finding was supported by similarity factor f2 analysis, suggesting the dissolution method has a discriminative capacity. The results of various model fits showed that the dissolution profiles produced by the different actuators could be fitted well using the Weibull mathematical model. The method employed in this study could offer a potential avenue for exploring the relationship between the orifice size of the actuator and the dissolution behavior of inhaled corticosteroids. This dissolution method was simple, reproducible, and suitable for determining the dissolution of inhalation aerosols.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Zhaoying Fang
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D, Linyi, Shandong, China
- Lunenbetter R&D Center, No.243 Yinquashan Road, Lanshan District, Linyi, Shandong, China
| | - Kunhao Yang
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D, Linyi, Shandong, China
- Lunenbetter R&D Center, No.243 Yinquashan Road, Lanshan District, Linyi, Shandong, China
| | - Xiaowei Guo
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D, Linyi, Shandong, China
- Lunenbetter R&D Center, No.243 Yinquashan Road, Lanshan District, Linyi, Shandong, China
| | - Shangyang Li
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D, Linyi, Shandong, China
| | - Ali Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Shandong, China.
- Shandong Engineering Research Center for New Drug Pharmaceuticals R&D, Linyi, Shandong, China.
- Lunenbetter R&D Center, No.243 Yinquashan Road, Lanshan District, Linyi, Shandong, China.
| |
Collapse
|
2
|
Patterlini V, Guareschi F, D’Angelo D, Baldini S, Meto S, Mostafa Kamal D, Fabrizzi P, Buttini F, Mösges R, Sonvico F. Clinically Relevant Characterization and Comparison of Ryaltris and Other Anti-Allergic Nasal Sprays. Pharmaceutics 2024; 16:989. [PMID: 39204334 PMCID: PMC11357686 DOI: 10.3390/pharmaceutics16080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The deposition, residence time, and dissolution profile of nasal suspensions containing corticosteroids play a key role in their in vivo efficacy after administration. However, the conventional methods available to characterize nasal products appear to be unsuitable to exhaustively cover these aspects. The work aims to investigate technological aspects of Ryaltris (mometasone furoate and olopatadine hydrochloride nasal spray) compared to other commercial anti-allergic nasal products, namely, Dymista (azelastine hydrochloride and fluticasone propionate), Nasonex (mometasone furoate), and Avamys (fluticasone furoate). Innovative characterization methods were combined with more traditional approaches to investigate the anti-allergic nasal sprays. These methods applied together allowed to differentiate between the different products and provided a clear picture of the nasal product behavior in terms of drug dissolution and deposition. In particular, the dissolution tests were performed exploiting the Respicell® apparatus, an innovative technique that allows for the investigation of inhalation products. Then, formulation viscosities were considered along with a formulation flow test on an inclined plane. Finally, the intranasal deposition profile of the commercial formulations was determined using a silicon nasal cast. The results highlight in vitro significant differences in terms of viscosity as well as dissolution rate of the nasal products, with Ryaltris showing a higher viscosity and lower flow compared to other products, which, along with a corticosteroid faster dissolution rate than Dymista, suggest a potential advantage in terms of clinical behavior.
Collapse
Affiliation(s)
- Virginia Patterlini
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
| | - Fabiola Guareschi
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
| | - Davide D’Angelo
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
| | - Simone Baldini
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Suada Meto
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Dalia Mostafa Kamal
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Paolo Fabrizzi
- Menarini Group, Via Sette Santi 1-3, 50131 Florence, Italy; (S.B.); (S.M.); (P.F.)
| | - Francesca Buttini
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ralph Mösges
- Institute of Medical Statistics and Computational Biology (IMSB), Medical Faculty, University at Cologne, 50923 Cologne, Germany;
| | - Fabio Sonvico
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (V.P.); (F.G.); (D.D.); (F.B.)
- Biopharmanet-TEC, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
4
|
Zhang Q, Wang Z, Shi K, Zhou H, Wei X, Hall P. Improving Inhalation Performance with Particle Agglomeration via Combining Mechanical Dry Coating and Ultrasonic Vibration. Pharmaceutics 2023; 16:68. [PMID: 38258079 PMCID: PMC10821125 DOI: 10.3390/pharmaceutics16010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and poor fine-particle delivery. In the present study, fine lactose was mechanically dry-coated prior to particle agglomeration, and the agglomerates were then spheroidized via ultrasonic vibration to improve their aerosol performance. The results showed that the agglomerate produced with the surface-enriched hydrophobic magnesium stearate and ultrasonic vibration demonstrated improved aerosolization properties, benefiting from their lower mechanical strength, less interactive cohesive force, and improved fine powder dispersion behavior. After dispersion utilizing a Turbuhaler® with a pharmaceutical cascade impactor test, a fine particle fraction (FPF) of 71.1 ± 1.3% and an artificial throat deposition of 19.3 ± 0.4% were achieved, suggesting the potential to improve the therapeutic outcomes of budesonide with less localized infections of the mouth and pharynx.
Collapse
Affiliation(s)
- Qingzhen Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
| | - Zheng Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
- Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd., Suzhou 215000, China;
| | - Hang Zhou
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Philip Hall
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Q.Z.); (Z.W.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China;
| |
Collapse
|
5
|
Somby K, Hingle M, Tomic I, Forbes B. The importance of dissolution for orally inhaled drug products: pharmaceutical, regulatory, and clinical considerations. Expert Opin Drug Deliv 2023; 20:1033-1036. [PMID: 37078605 DOI: 10.1080/17425247.2023.2205636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 04/21/2023]
Affiliation(s)
- Karin Somby
- King's College London, Institute of Pharmaceutical Science, London, UK
- Novartis Pharma AG, Basel, Switzerland
| | | | | | - Ben Forbes
- King's College London, Institute of Pharmaceutical Science, London, UK
| |
Collapse
|
6
|
D'Angelo D, Quarta E, Glieca S, Varacca G, Flammini L, Bertoni S, Brandolini M, Sambri V, Grumiro L, Gatti G, Dirani G, Taddei F, Bianchera A, Sonvico F, Bettini R, Buttini F. An Enhanced Dissolving Cyclosporin-A Inhalable Powder Efficiently Reduces SARS-CoV-2 Infection In Vitro. Pharmaceutics 2023; 15:pharmaceutics15031023. [PMID: 36986883 PMCID: PMC10055879 DOI: 10.3390/pharmaceutics15031023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This work illustrates the development of a dry inhalation powder of cyclosporine-A for the prevention of rejection after lung transplantation and for the treatment of COVID-19. The influence of excipients on the spray-dried powder's critical quality attributes was explored. The best-performing powder in terms of dissolution time and respirability was obtained starting from a concentration of ethanol of 45% (v/v) in the feedstock solution and 20% (w/w) of mannitol. This powder showed a faster dissolution profile (Weibull dissolution time of 59.5 min) than the poorly soluble raw material (169.0 min). The powder exhibited a fine particle fraction of 66.5% and an MMAD of 2.97 µm. The inhalable powder, when tested on A549 and THP-1, did not show cytotoxic effects up to a concentration of 10 µg/mL. Furthermore, the CsA inhalation powder showed efficiency in reducing IL-6 when tested on A549/THP-1 co-culture. A reduction in the replication of SARS-CoV-2 on Vero E6 cells was observed when the CsA powder was tested adopting the post-infection or simultaneous treatment. This formulation could represent a therapeutic strategy for the prevention of lung rejection, but is also a viable approach for the inhibition of SARS-CoV-2 replication and the COVID-19 pulmonary inflammatory process.
Collapse
Affiliation(s)
- Davide D'Angelo
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Eride Quarta
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Stefania Glieca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Giada Varacca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Lisa Flammini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Simona Bertoni
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Martina Brandolini
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Laura Grumiro
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Giulia Gatti
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, 40138 Bologna, Italy
| | - Giorgio Dirani
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Francesca Taddei
- Microbiology Unit, The Great Romagna Area Hub Laboratory, Piazza della Liberazione 60, Pievesestina, 47522 Cesena, Italy
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| |
Collapse
|
7
|
In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics 2023; 15:pharmaceutics15030983. [PMID: 36986844 PMCID: PMC10059005 DOI: 10.3390/pharmaceutics15030983] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
In vitro dissolution and permeability testing aid the simulation of the in vivo behavior of inhalation drug products. Although the regulatory bodies have specific guidelines for the dissolution of orally administered dosage forms (e.g., tablets and capsules), this is not the case for orally inhaled formulations, as there is no commonly accepted test for assessing their dissolution pattern. Up until a few years ago, there was no consensus that assessing the dissolution of orally inhaled drugs is a key factor in the assessment of orally inhaled products. With the advancement of research in the field of dissolution methods for orally inhaled products and a focus on systemic delivery of new, poorly water-soluble drugs at higher therapeutic doses, an evaluation of dissolution kinetics is proving crucial. Dissolution and permeability testing can determine the differences between the developed formulations and the innovator’s formulations and serve as a useful tool in correlating in vitro and in vivo studies. The current review highlights recent advances in the dissolution and permeability testing of inhalation products and their limitations, including recent cell-based technology. Although a few new dissolution and permeability testing methods have been established that have varying degrees of complexity, none have emerged as the standard method of choice. The review discusses the challenges of establishing methods that can closely simulate the in vivo absorption of drugs. It provides practical insights into method development for various dissolution testing scenarios and challenges with dose collection and particle deposition from inhalation devices for dissolution tests. Furthermore, dissolution kinetic models and statistical tests to compare the dissolution profiles of test and reference products are discussed.
Collapse
|
8
|
Stankovic-Brandl M, Radivojev S, Sailer P, Penz FK, Paudel A. Elucidation of the effect of added fines on the performance of dry powder inhalation formulations. Int J Pharm 2022; 629:122359. [DOI: 10.1016/j.ijpharm.2022.122359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
|