1
|
Chebaro Z, Mesmar JE, Badran A, Al-Sawalmih A, Maresca M, Baydoun E. Halophila stipulacea: A Comprehensive Review of Its Phytochemical Composition and Pharmacological Activities. Biomolecules 2024; 14:991. [PMID: 39199379 PMCID: PMC11353240 DOI: 10.3390/biom14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Halophila stipulacea (Forsskål and Niebuhr) Ascherson is a small marine seagrass that belongs to the Hydrocharitaceae family. It is native to the Red Sea, Persian Gulf, and Indian Ocean and has successfully invaded the Mediterranean and Caribbean Seas. This article summarizes the pharmacological activities and phytochemical content of H. stipulacea, along with its botanical and ecological characteristics. Studies have shown that H. stipulacea is rich in polyphenols and terpenoids. Additionally, it is rich in proteins, lipids, and carbohydrates, contributing to its nutritional value. Several biological activities are reported by this plant, including antimicrobial, antioxidant, anticancer, anti-inflammatory, anti-metabolic disorders, and anti-osteoclastogenic activities. Further research is needed to validate the efficacy and safety of this plant and to investigate the mechanisms of action underlying the observed effects.
Collapse
Affiliation(s)
- Ziad Chebaro
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| | - Joelle Edward Mesmar
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman 11196, Jordan;
| | - Ali Al-Sawalmih
- Marine Science Station, University of Jordan, Aqaba 11942, Jordan;
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, 13013 Marseille, France
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; (Z.C.); (J.E.M.)
| |
Collapse
|
2
|
Dar MR, Khan AK, Inam M, Hano C, Anjum S. Differential Impact of Zinc Salt Precursors on Physiognomies, Anticancerous, and Antibacterial Activities of Zinc Oxide Nanoparticles. Appl Biochem Biotechnol 2024; 196:4874-4899. [PMID: 37979085 DOI: 10.1007/s12010-023-04781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.
Collapse
Affiliation(s)
- Momina Riaz Dar
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Mubashra Inam
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures, INRAE USC1328, University of Orleans, 45067CEDEX 2, Orleans, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.
| |
Collapse
|
3
|
Antibacterial Activity of Solvothermal Obtained ZnO Nanoparticles with Different Morphology and Photocatalytic Activity against a Dye Mixture: Methylene Blue, Rhodamine B and Methyl Orange. Int J Mol Sci 2023; 24:ijms24065677. [PMID: 36982751 PMCID: PMC10058279 DOI: 10.3390/ijms24065677] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
In this paper, we report the synthesis of ZnO nanoparticles (NPs) by forced solvolysis of Zn(CH3COO)2·2H2O in alcohols with a different number of –OH groups. We study the influence of alcohol type (n-butanol, ethylene glycol and glycerin) on the size, morphology, and properties of the obtained ZnO NPs. The smallest polyhedral ZnO NPs (<30 nm) were obtained in n-butanol, while in ethylene glycol the NPs measured on average 44 nm and were rounded. Polycrystalline particles of 120 nm were obtained in glycerin only after water refluxing. In addition, here, we report the photocatalytic activity, against a dye mixture, of three model pollutants: methyl orange (MO), methylene blue (MB), and rhodamine B (RhB), a model closer to real situations where water is polluted with many chemicals. All samples exhibited good photocatalytic activity against the dye mixture, with degradation efficiency reaching 99.99%. The sample with smallest nanoparticles maintained a high efficiency >90%, over five catalytic cycles. Antibacterial tests were conducted against Gram-negative strains Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive strains Enterococcus faecalis, Bacillus subtilis, Staphylococcus aureus, and Bacillus cereus. The ZnO samples presented strong inhibition of planktonic growth for all tested strains, indicating that they can be used for antibacterial applications, such as water purification.
Collapse
|
4
|
Characterization and Biological Studies of Synthesized Titanium Dioxide Nanoparticles from Leaf Extract of Juniperus phoenicea (L.) Growing in Taif Region, Saudi Arabia. Processes (Basel) 2023. [DOI: 10.3390/pr11010272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Green synthesis of metal nanoparticles in nanosized form has acquired great interest in the area of nanomedicine as an environmentally friendly and cost-effective alternative compared to other chemical and physical methods. This study deals with the eco-friendly green synthesis of titanium dioxide nanoparticles (TiO2 NPs) utilizing Juniperus phoenicea leaf extract and their characterization. The biosynthesis of TiO2 NPs was completed in 3 h and confirmed by UV-Vis spectroscopy, a strong band at 205.4 nm distinctly revealed the formation of NPs. Transmissions electron microscopy (TEM) analysis showed the synthesized TiO2 NPs are spherical in shape, with a diameter in a range of 10–30 nm. The XRD major peak at 27.1° congruent with the (110) lattice plane of tetragonal rutile TiO2 phase. Dynamic light scattering (DLS) analysis revealed synthesized TiO2 NPs average particle size (hydrodynamic diameter) of (74.8 ± 0.649) nm. Fourier transmission infrared (FTIR) revealed the bioactive components present in the leaf extract, which act as reducing and capping agents. The antimicrobial efficacy of synthesized TiO2NPs against, Staphylococcus aureus, and Bacillus subtilis (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), Yeast strain (Saccharomyces cerevisiae) and fungi (Aspergillus niger, and Penicillium digitatum) assayed by a disc diffusion method. TiO2NPs inhibited all tested strains by mean inhibition zone (MIZ), which ranged from the lowest 15.7 ± 0.45 mm against K. pneumoniae to the highest 30.3 ± 0.25 against Aspergillus niger. The lowest minimum inhibitory concentration (MIC) and bactericidal (MBC) values were 20 μL/mL and 40 μL/mL of TiO2NPs were observed against Asp. niger. Moreover, it showed significant inhibitory activity against human ovarian adenocarcinoma cells with IC50 = 50.13 ± 1.65 µg/mL. The findings concluded that biosynthesized TiO2 NPs using Juniperus phoenicea leaf extract can be used in medicine as curative agents according to their in vitro antibacterial, antifungal, and cytotoxic activities.
Collapse
|
5
|
Elderdery AY, Alzahrani B, Alabdulsalam AA, Alanazi F, M A Hamza S, M E Elkhalifa A, Alhamidi AH, Mohamedain A, Kumar SS, Ling P. Synthesis of nickel cobalt-codoped Tin oxide nanoparticles from Psidium guajava with anticancer properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
6
|
Hou T, Sankar Sana S, Li H, Wang X, Wang Q, Boya VKN, Vadde R, Kumar R, Kumbhakar DV, Zhang Z, Mamidi N. Development of Plant Protein Derived Tri Angular Shaped Nano Zinc Oxide Particles with Inherent Antibacterial and Neurotoxicity Properties. Pharmaceutics 2022; 14:pharmaceutics14102155. [PMID: 36297590 PMCID: PMC9610397 DOI: 10.3390/pharmaceutics14102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of nanometer-sized metallic nanoparticles utilizing bio-sources is one of the most cost-effective and ecologically friendly approaches. Nano-zinc oxide particles (N-ZnO Ps) were made using a simple green synthesis method using an aqueous zinc nitrate salt and Perilla frutescens crude protein as a protecting and reducing agent in the current work. UV-visible (UV-vis) spectrophotometry, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), (energy dispersive x-ray spectroscopy) EDX and high-resolution transmission electron microscopy (HR-TEM) were used to characterize the synthesized N-ZnO Ps. A distinctive UV-vis absorption peak was observed at 370 nm due to N-ZnO Ps. The SEM and HR-TEM pictures revealed N-ZnO Ps with a triangular form. The XRD pattern indicated the wurtzite structure of N-ZnO Ps. Nanoparticles exhibited a zeta potential of −11.3 mV. The antibacterial activity of N-ZnO Ps was tested against Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumonia) microorganisms. The N-ZnO Ps were non-toxic to HMC-3 human normal brain microglia cells; however, they exhibited a potential cytotoxic effect on the LN-18 human brain glioblastoma cell line. These results indicate that N-ZnOPs can act as promising antibacterial and anticancer treatments in the prevention of Glioblastoma.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
| | - Siva Sankar Sana
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
| | - Xin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
| | - Qinqin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
| | - Vijaya Kumar Naidu Boya
- Department of Material Science and Nanotechnology, Yogi Vemana University, Kadapa 516005, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | | | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
- Correspondence: (Z.Z.); (N.M.)
| | - Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Correspondence: (Z.Z.); (N.M.)
| |
Collapse
|
7
|
Bio-fabricated zinc oxide and cry protein nanocomposites: Synthesis, characterization, potentiality against Zika, malaria and West Nile virus vector's larvae and their impact on non-target organisms. Int J Biol Macromol 2022; 224:699-712. [DOI: 10.1016/j.ijbiomac.2022.10.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
8
|
Anjum S, Nawaz K, Ahmad B, Hano C, Abbasi BH. Green synthesis of biocompatible core-shell (Au-Ag) and hybrid (Au-ZnO and Ag-ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv 2022; 12:23845-23859. [PMID: 36093232 PMCID: PMC9396731 DOI: 10.1039/d2ra03196e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The fabrication of bimetallic nanoparticles (BNPs) using plant extracts is applauded since it is an environmentally and biologically safe method. In this research, Manilkara zapota leaf extract was utilized to bioreduce metal ions for the production of therapeutically important core-shell Au-Ag and hybrid (Au-ZnO and Ag-ZnO) BNPs. The phytochemical profiling of the leaf extract in terms of total phenolic and flavonoid content is attributed to its high free radical scavenging activity. FTIR data also supported the involvement of these phytochemicals (polyphenols, flavonoids, aromatic compounds and alkynes) in the synthesis of BNPs. Whereas, TEM and XRD showed the formation of small sized (16.57 nm) spherical shaped core-shell Au-Ag BNPs and ZnO nano-needles with spherical AuNPs (48.32 nm) and ZnO nano-rods with spherical AgNP (19.64 nm) hybrid BNPs. The biological activities of BNPs reinforced the fact that they show enhanced therapeutic efficacy as compared to their monometallic components. All BNPs showed comparable antibacterial activities as compared to standard tetracycline discs. While small sized Au-Ag BNPs were most effective in killing human hepato-cellular carcinoma cells (HepG2) in terms of lowest cell viability, highest intracellular ROS/RNS production, loss of mitochondrial membrane potential, induction of caspase-3 gene expression and enhanced caspase-3/7 activity. BNPs also effectively inhibited advanced glycation end products and carbohydrate digesting enzymes which can be used as a nano-medicine for aging and diabetes. The most important finding was the permissible biocompatibility of these BNPs towards brine shrimp larvae and human RBCs, which suggests their environmental and biological safety. This research study gives us insight into the promise of using a green route to synthesize commercially important BNPs with enhanced therapeutic efficacy as compared to conventional treatment options.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Khadija Nawaz
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Bushra Ahmad
- Department of Biochemistry, Shaheed Benzair Bhutto Women University Peshwar-25120 Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans 45067 Orléans Cedex 2 France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan
| |
Collapse
|
9
|
Anjum S, Chaudhary R, Khan AK, Hashim M, Anjum I, Hano C, Abbasi BH. Light-emitting diode (LED)-directed green synthesis of silver nanoparticles and evaluation of their multifaceted clinical and biological activities. RSC Adv 2022; 12:22266-22284. [PMID: 36043104 PMCID: PMC9364226 DOI: 10.1039/d2ra03503k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The trend of using plant extracts for the synthesis of nanoparticles has increased in recent years due to environmental safety, low cost, simplicity and sustainability of the green route. Moreover, the morphology of NPs can be fine-tuned by applying abiotic factors such as LEDs, which enhance the bio-reduction of the precursor salt and excite phytochemicals during their green synthesis. Considering this, in present study, the green synthesis of AgNPs was carried out using Dalbergia sissoo leaf extract under the illumination of red, green, blue, yellow and white LEDs. The phytochemical profile of the leaf extract in terms of total phenolic and flavonoid content was responsible for the effective synthesis of AgNPs, where alcohols and phenols were mainly involved in the capping and bio-reduction of the NPs. Moreover, the XRD data showed the face center cubic crystalline nature of the AgNPs with the interesting finding that the LEDs helped to reduce the size of the AgNPs significantly. Among the samples, Y-DS-AgNPs (34.63 nm) were the smallest in size, with the control having a size of 87.35 nm. The LEDs not only reduced the size of the AgNPs but also resulted in the synthesis of non-agglomerated AgNPs with different shapes including spherical, triangular, and hexagonal compared to the mixed-shape control AgNPs, as shown by the SEM analysis. These LED-directed AgNPs showed extraordinary therapeutic potential especially B-DS-AgNPs, which exhibited the highest anti-oxidant, anti-glycation and anti-bacterial activities. Alternatively, Y-DS-AgNPs were the most cytotoxic towards HepG2 cells, inducing intracellular ROS/RNS production, accompanied by a disruption in the mitochondrial membrane potential, caspase-3 gene activation and induction of caspase-3/7 activity. Lastly, AgNPs showed mild toxicity towards brine shrimp and moderately hemolyzed hRBCs, showing their biosafe nature. Here, we conclude that external factors such as LEDs are effective in controlling the morphology of AgNPs, which further enhanced their therapeutic efficacy.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Rimsha Chaudhary
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Amna Komal Khan
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women 92-Jail Road Lahore-54000 Pakistan +92-3006957038
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, University of Orleans 45067 Orléans CEDEX 2 France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad-45320 Pakistan
| |
Collapse
|
10
|
Gharpure S, Yadwade R, Ankamwar B. Non-antimicrobial and Non-anticancer Properties of ZnO Nanoparticles Biosynthesized Using Different Plant Parts of Bixa orellana. ACS OMEGA 2022; 7:1914-1933. [PMID: 35071882 PMCID: PMC8771956 DOI: 10.1021/acsomega.1c05324] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 05/02/2023]
Abstract
As traditional cancer therapy is toxic to both normal and cancer cells, there is a need for newer approaches to specifically target cancer cells. ZnO nanoparticles can be promising due their biocompatible nature. However, ZnO nanoparticles have also shown cytotoxicity against mammalian cells in some cases, because of which there is a need for newer synthesis approaches for biocompatible ZnO nanoparticles to be used as carrier molecules in drug delivery applications. Here, we report the biosynthesis of ZnO nanoparticles using different plant parts (leaf, seed, and seed coat) of Bixa orellana followed by different characterizations. The UV-visible spectra of ZnO showed absorption maxima at 341 and 353 nm, 378 and 373 nm, and 327 and 337 nm, respectively, before and after calcination corresponding to the band gap energy of 3.636 and 3.513 eV, 3.280 and 3.324 eV, and 3.792 and 3.679 eV for L-ZnO, S-ZnO, and Sc-ZnO, respectively. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structures. Attenuated total reflectance infrared spectra revealed the presence of stretching vibrations of C-C, C=C, C=O, and NH3 + groups along with C-H deformation involving biomolecules from extracts responsible for reduction and stabilization of nanoparticles. Field emission scanning electron microscopy and transmission electron microscopy images showed spherical and almond-like morphologies of L-ZnO and Sc-ZnO with spherical morphologies, whereas S-ZnO showed almond-like morphologies. The presence of antibacterial activity was observed in L-ZnO against Staphylococcus aureus and Bacillus subtilis, in S-ZnO nanoparticles only against Escherichia coli, and in Sc-ZnO only against Staphylococcus aureus. Uncalcinated ZnO nanoparticles showed weak antibacterial activities, whereas calcinated ZnO nanoparticles showed a non-antibacterial nature. The antifungal activity against different fungi (Penicillium sp., Aspergillus flavus, Fusarium oxysporum, and Rhizoctonia solani) and cytotoxicity against HCT-116 cancer cells were not observed before and after calcination in all three ZnO nanoparticles. The antimicrobial nature and biocompatibility of ZnO nanoparticles were influenced by different parameters of the nanoparticles along with microorganisms and the human cells. Non-antimicrobial properties of ZnO nanoparticles can be treated as a pre-requisite for its biocompatibility due to its inert nature. Thus, biosynthesized ZnO nanoparticles showed a nontoxic nature, which can be exploited as promising alternatives in biomedical applications.
Collapse
|
11
|
Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomolecules 2021; 12:31. [PMID: 35053179 PMCID: PMC8773616 DOI: 10.3390/biom12010031] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Nanotechnology is a fast-expanding and multidisciplinary field with many applications in science and technology [...].
Collapse
Affiliation(s)
- Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Eure et Loir Campus, Université d’Orléans, 28000 Chartres, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|