1
|
Zaid NRR, Bastiaannet R, Hobbs R, Sgouros G. Mathematic Modeling of Tumor Growth During [ 177Lu]Lu-PSMA Therapy: Insights into Treatment Optimization. J Nucl Med 2025; 66:84-90. [PMID: 39753362 PMCID: PMC11705791 DOI: 10.2967/jnumed.124.268457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025] Open
Abstract
The treatment regimen for [177Lu]Lu-prostate-specific membrane antigen (PSMA) 617 therapy follows that of chemotherapy: 6 administrations of a fixed activity, each separated by 6 wk. Mathematic modeling can be used to test the hypothesis that the current treatment regimen for a radiopharmaceutical modality is suboptimal. Methods: A mathematic model was developed to describe tumor growth during [177Lu]Lu-PSMA therapy. The model examined alternative treatment schedules to maximize tumor mass reduction while still maintaining an acceptable biologically effective dose to kidneys. Median patients' pharmacokinetics from literature reports were used to obtain the dose rate over time. The model incorporates the Gompertz tumor growth and linear quadratic models to describe the effect of radiation-induced cell kill on tumor growth. For a fixed total activity of 44.4 GBq of [177Lu]Lu-PSMA-617 and a 6-wk interval between cycles, the efficacy of the standard fractionation (6-cycle) treatment schedule was compared with different treatment regimens for a distribution of published tumor masses. A treatment schedule whereby 7.4 GBq are administered in the first cycle, and the remaining activity (37 GBq) in the second cycle (1-2-cycle treatment), was examined. Results: When tumor mass nadir was used as the optimization metric, a lower tumor burden (e.g., <4 g) was insensitive to the number of cycles; the 6-cycle treatment was equivalent to the 1-2-cycle treatment. For larger masses, fewer cycles yielded better results. For a 7-g tumor, the 5-cycle, 4-cycle, 3-cycle and 1-2-cycle schedules were 24%, 50%, 76%, and 84% more efficacious, respectively, than the 6-cycle schedule. The absorbed doses to kidneys, parotid glands, lacrimal glands, and red marrow were 23, 16, 70, and 1 Gy, respectively. In all fractionated schedules, the biologically effective dose to kidneys was within tolerance (<40 Gy). Conclusion: On the basis of model-derived simulations, treatment delivered in a 1-2-cycle schedule is recommended to achieve better outcomes for patients undergoing [177Lu]Lu-PSMA therapy.
Collapse
Affiliation(s)
- Nouran R R Zaid
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Remco Bastiaannet
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Rob Hobbs
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - George Sgouros
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
2
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:2955-2967. [PMID: 39466073 PMCID: PMC11562018 DOI: 10.1158/2767-9764.crc-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
SIGNIFICANCE Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
3
|
Saldarriaga Vargas C, Andersson M, Bouvier-Capely C, Li WB, Madas B, Covens P, Struelens L, Strigari L. Heterogeneity of absorbed dose distribution in kidney tissues and dose-response modelling of nephrotoxicity in radiopharmaceutical therapy with beta-particle emitters: A review. Z Med Phys 2024; 34:491-509. [PMID: 37031068 PMCID: PMC11624361 DOI: 10.1016/j.zemedi.2023.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023]
Abstract
Absorbed dose heterogeneity in kidney tissues is an important issue in radiopharmaceutical therapy. The effect of absorbed dose heterogeneity in nephrotoxicity is, however, not fully understood yet, which hampers the implementation of treatment optimization by obscuring the interpretation of clinical response data and the selection of optimal treatment options. Although some dosimetry methods have been developed for kidney dosimetry to the level of microscopic renal substructures, the clinical assessment of the microscopic distribution of radiopharmaceuticals in kidney tissues currently remains a challenge. This restricts the anatomical resolution of clinical dosimetry, which hinders a thorough clinical investigation of the impact of absorbed dose heterogeneity. The potential of absorbed dose-response modelling to support individual treatment optimization in radiopharmaceutical therapy is recognized and gaining attraction. However, biophysical modelling is currently underexplored for the kidney, where particular modelling challenges arise from the convolution of a complex functional organization of renal tissues with the function-mediated dose distribution of radiopharmaceuticals. This article reviews and discusses the heterogeneity of absorbed dose distribution in kidney tissues and the absorbed dose-response modelling of nephrotoxicity in radiopharmaceutical therapy. The review focuses mainly on the peptide receptor radionuclide therapy with beta-particle emitting somatostatin analogues, for which the scientific literature reflects over two decades of clinical experience. Additionally, detailed research perspectives are proposed to address various identified challenges to progress in this field.
Collapse
Affiliation(s)
- Clarita Saldarriaga Vargas
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Michelle Andersson
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Bouvier-Capely
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses, France
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Balázs Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Peter Covens
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lara Struelens
- Radiation Protection Dosimetry and Calibrations, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595377. [PMID: 38826403 PMCID: PMC11142146 DOI: 10.1101/2024.05.22.595377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The rate of binding of drug to cancer cells depends on the total number of their specific receptors, which therefore can be estimated from the pharmacokinetic curve of diagnostic radioconjugates. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies allows for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, United States
| | - John E Shively
- Department of Molecular Imaging & Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
5
|
Vasić V, Gustafsson J, Nowshahr EY, Stenvall A, Beer AJ, Gleisner KS, Glatting G. A PBPK model for PRRT with [ 177Lu]Lu-DOTA-TATE: Comparison of model implementations in SAAM II and MATLAB/SimBiology. Phys Med 2024; 119:103299. [PMID: 38367588 DOI: 10.1016/j.ejmp.2024.103299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 02/19/2024] Open
Abstract
Physiologically based pharmacokinetic (PBPK) models offer the ability to simulate and predict the biodistribution of radiopharmaceuticals and have the potential to enable individualised treatment planning in molecular radiotherapy. The objective of this study was to develop and implement a whole-body compartmental PBPK model for peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-TATE in SimBiology to allow for more complex analyses. The correctness of the model implementation was ensured by comparing its outputs, such as the time-integrated activity (TIA), with those of a PBPK model implemented in SAAM II software. METHODS A combined PBPK model for [68Ga]Ga-DOTA-TATE and [177Lu]Lu-DOTA-TATE was developed and implemented in both SAAM II and SimBiology. A retrospective analysis of 12 patients with metastatic neuroendocrine tumours (NETs) was conducted. First, time-activity curves (TACs) and TIAs from the two software were calculated and compared for identical parameter values. Second, pharmacokinetic parameters were fitted to activity concentrations, analysed and compared. RESULTS The PBPK model implemented in SimBiology produced TIA results comparable to those generated by the model implemented in SAAM II, with a relative deviation of less than 0.5% when using the same input parameters. The relative deviation of the fitted TIAs was less than 5% when model parameter values were fitted to the measured activity concentrations. CONCLUSION The proposed PBPK model implemented in SimBiology can be used for dosimetry in radioligand therapy and TIA prediction. Its outputs are similar to those generated by the PBPK model implemented in SAAM II, confirming the correctness of the model implementation in SimBiology.
Collapse
Affiliation(s)
- Valentina Vasić
- Department of Nuclear Medicine, Ulm University, Ulm, Germany; Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany.
| | | | - Elham Yousefzadeh Nowshahr
- Department of Nuclear Medicine, Ulm University, Ulm, Germany; Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Anna Stenvall
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | | | - Gerhard Glatting
- Department of Nuclear Medicine, Ulm University, Ulm, Germany; Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Fele-Paranj A, Saboury B, Uribe C, Rahmim A. Physiologically based radiopharmacokinetic (PBRPK) modeling to simulate and analyze radiopharmaceutical therapies: studies of non-linearities, multi-bolus injections, and albumin binding. EJNMMI Radiopharm Chem 2024; 9:6. [PMID: 38252191 PMCID: PMC10803696 DOI: 10.1186/s41181-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND We aimed to develop a publicly shared computational physiologically based pharmacokinetic (PBPK) model to reliably simulate and analyze radiopharmaceutical therapies (RPTs), including probing of hot-cold ligand competitions as well as alternative injection scenarios and drug designs, towards optimal therapies. RESULTS To handle the complexity of PBPK models (over 150 differential equations), a scalable modeling notation called the "reaction graph" is introduced, enabling easy inclusion of various interactions. We refer to this as physiologically based radiopharmacokinetic (PBRPK) modeling, fine-tuned specifically for radiopharmaceuticals. As three important applications, we used our PBRPK model to (1) study the effect of competition between hot and cold species on delivered doses to tumors and organs at risk. In addition, (2) we evaluated an alternative paradigm of utilizing multi-bolus injections in RPTs instead of prevalent single injections. Finally, (3) we used PBRPK modeling to study the impact of varying albumin-binding affinities by ligands, and the implications for RPTs. We found that competition between labeled and unlabeled ligands can lead to non-linear relations between injected activity and the delivered dose to a particular organ, in the sense that doubling the injected activity does not necessarily result in a doubled dose delivered to a particular organ (a false intuition from external beam radiotherapy). In addition, we observed that fractionating injections can lead to a higher payload of dose delivery to organs, though not a differential dose delivery to the tumor. By contrast, we found out that increased albumin-binding affinities of the injected ligands can lead to such a differential effect in delivering more doses to tumors, and this can be attributed to several factors that PBRPK modeling allows us to probe. CONCLUSIONS Advanced computational PBRPK modeling enables simulation and analysis of a variety of intervention and drug design scenarios, towards more optimal delivery of RPTs.
Collapse
Affiliation(s)
- Ali Fele-Paranj
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, US
| | - Carlos Uribe
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Functional Imaging, BC Cancer, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Li M, Baumhover NJ, Liu D, Cagle BS, Boschetti F, Paulin G, Lee D, Dai Z, Obot ER, Marks BM, Okeil I, Sagastume EA, Gabr M, Pigge FC, Johnson FL, Schultz MK. Preclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics. Pharmaceutics 2023; 15:414. [PMID: 36839736 PMCID: PMC9966725 DOI: 10.3390/pharmaceutics15020414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023] Open
Abstract
203Pb and 212Pb have emerged as promising theranostic isotopes for image-guided α-particle radionuclide therapy for cancers. Here, we report a cyclen-based Pb specific chelator (PSC) that is conjugated to tyr3-octreotide via a PEG2 linker (PSC-PEG-T) targeting somatostatin receptor subtype 2 (SSTR2). PSC-PEG-T could be labeled efficiently to purified 212Pb at 25 °C and also to 212Bi at 80 °C. Efficient radiolabeling of mixed 212Pb and 212Bi in PSC-PEG-T was also observed at 80 °C. Post radiolabeling, stable Pb(II) and Bi(III) radiometal complexes in saline were observed after incubating [203Pb]Pb-PSC-PEG-T for 72 h and [212Bi]Bi-PSC-PEG-T for 5 h. Stable [212Pb]Pb-PSC-PEG-T and progeny [212Bi]Bi-PSC-PEG-T were identified after storage in saline for 24 h. In serum, stable radiometal/radiopeptide were observed after incubating [203Pb]Pb-PSC-PEG-T for 55 h and [212Pb]Pb-PSC-PEG-T for 24 h. In vivo biodistribution of [212Pb]Pb-PSC-PEG-T in tumor-free CD-1 Elite mice and athymic mice bearing AR42J xenografts revealed rapid tumor accumulation, excellent tumor retention and fast renal clearance of both 212Pb and 212Bi, with no in vivo redistribution of progeny 212Bi. Single-photon emission computed tomography (SPECT) imaging of [203Pb]Pb-PSC-PEG-T and [212Pb]Pb-PSC-PEG-T in mice also demonstrated comparable accumulation in AR42J xenografts and renal clearance, confirming the theranostic potential of the elementally identical 203Pb/212Pb radionuclide pair.
Collapse
Affiliation(s)
- Mengshi Li
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | | | - Dijie Liu
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Brianna S. Cagle
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | | | | | - Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea
| | - Zhiming Dai
- Department of Chemistry, The University of Iowa, Iowa City, IA 52240, USA
| | - Ephraim R. Obot
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Brenna M. Marks
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Ibrahim Okeil
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Edwin A. Sagastume
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Frances L. Johnson
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
| | - Michael K. Schultz
- Viewpoint Molecular Targeting, Inc., 2500 Crosspark Road, Coralville, IA 52241, USA
- Department of Radiology, The University of Iowa, Iowa City, IA 52246, USA
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
8
|
Müller D, Herrmann H, Schultz MK, Solbach C, Ettrich T, Prasad V. 203 Pb-VMT-α-NET Scintigraphy of a Patient With Neuroendocrine Tumor. Clin Nucl Med 2023; 48:54-55. [PMID: 36257061 PMCID: PMC9762701 DOI: 10.1097/rlu.0000000000004464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT In an end-stage midgut neuroendocrine tumor patient with carcinoid heart disease, right ventricular dysfunction, mildly reduced renal function, and refractory to 6 cycles of 177 Lu-HA-DOTATATE therapy, planar, and 22 hours SPECT/CT images were acquired after injection of 224 MBq of 203 Pb-VMT-α-NET to assess the feasibility of performing 212 Pb-VMT-α-NET therapy. A comparison of the 1.5 and 22 hours SPECT/CT images with 68 Ga-HA-DOTATATE PET/CT showed high uptake of 203 Pb-VMT-α-NET in liver metastases matching with the results of the PET/CT investigation.
Collapse
Affiliation(s)
- Dirk Müller
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Hendrik Herrmann
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| | | | - Christoph Solbach
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| | - Thomas Ettrich
- Clinic of Internal Medicine, University of Ulm, Ulm, Germany
| | - Vikas Prasad
- From the Department of Nuclear Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
9
|
Kvassheim M, Revheim MER, Stokke C. Quantitative SPECT/CT imaging of lead-212: a phantom study. EJNMMI Phys 2022; 9:52. [PMID: 35925521 PMCID: PMC9352840 DOI: 10.1186/s40658-022-00481-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background Lead-212 (212Pb) is a promising radionuclide for targeted therapy, as it decays to α-particle emitter bismuth-212 (212Bi) via β-particle emission. This extends the problematic short half-life of 212Bi. In preparation for upcoming clinical trials with 212Pb, the feasibility of quantitative single photon-emission computed tomography/computed tomography (SPECT/CT) imaging of 212Pb was studied, with the purpose to explore the possibility of individualised patient dosimetric estimation. Results Both acquisition parameters (combining two different energy windows and two different collimators) and iterative reconstruction parameters (varying the iterations x subsets between 10 × 1, 15 × 1, 30 × 1, 30 × 2, 30 × 3, 30 × 4, and 30 × 30) were investigated to evaluate visual quality and quantitative uncertainties based on phantom images. Calibration factors were determined using a homogeneous phantom and were stable when the total activity imaged exceeded 1 MBq for all the imaging protocols studied, but they increased sharply as the activity decayed below 1 MBq. Both a 20% window centred on 239 keV and a 40% window on 79 keV, with dual scatter windows of 5% and 20%, respectively, could be used. Visual quality at the lowest activity concentrations was improved with the High Energy collimator and the 79 keV energy window. Fractional uncertainty in the activity quantitation, including uncertainties from calibration factors and small volume effects, in spheres of 2.6 ml in the NEMA phantom was 16–21% for all protocols with the 30 × 4 filtered reconstruction except the High Energy collimator with the 239 keV energy window. Quantitative analysis was possible both with and without filters, but the visual quality of the images improved with a filter. Conclusions Only minor differences were observed between the imaging protocols which were all determined suitable for quantitative imaging of 212Pb. As uncertainties generally decreased with increasing iterative updates in the reconstruction and recovery curves did not converge with few iterations, a high number of reconstruction updates are recommended for quantitative imaging. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00481-z.
Collapse
Affiliation(s)
- Monika Kvassheim
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mona-Elisabeth R Revheim
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Caroline Stokke
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Kokov KV, Egorova BV, German MN, Klabukov ID, Krasheninnikov ME, Larkin-Kondrov AA, Makoveeva KA, Ovchinnikov MV, Sidorova MV, Chuvilin DY. 212Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022; 14:pharmaceutics14010189. [PMID: 35057083 PMCID: PMC8777968 DOI: 10.3390/pharmaceutics14010189] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Over the last decade, targeted alpha therapy has demonstrated its high effectiveness in treating various oncological diseases. Lead-212, with a convenient half-life of 10.64 h, and daughter alpha-emitter short-lived 212Bi (T1/2 = 1 h), provides the possibility for the synthesis and purification of complex radiopharmaceuticals with minimum loss of radioactivity during preparation. As a benefit for clinical implementation, it can be milked from a radionuclide generator in different ways. The main approaches applied for these purposes are considered and described in this review, including chromatographic, solution, and other techniques to isolate 212Pb from its parent radionuclide. Furthermore, molecules used for lead’s binding and radiochemical features of preparation and stability of compounds labeled with 212Pb are discussed. The results of preclinical studies with an estimation of therapeutic and tolerant doses as well as recently initiated clinical trials of targeted radiopharmaceuticals are presented.
Collapse
Affiliation(s)
- Konstantin V. Kokov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Bayirta V. Egorova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: or
| | - Marina N. German
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249036 Obninsk, Russia;
| | - Michael E. Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Antonius A. Larkin-Kondrov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Kseniya A. Makoveeva
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Michael V. Ovchinnikov
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Maria V. Sidorova
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Dmitry Y. Chuvilin
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| |
Collapse
|